1
|
Cui X, Chen J, Yi H, Wei Z. Mapping Reaction Pathways by In Situ Step Sweep Voltammetry Flow Electrochemical Mass Spectrometry. Anal Chem 2024; 96:17765-17772. [PMID: 39437319 DOI: 10.1021/acs.analchem.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A step sweep voltammetry (SSV) flow electrochemical (EC) mass spectrometry (MS) platform was developed for real-time and in situ mapping of EC reaction pathways. By integrating a flow EC cell into the pneumatic spray nozzle followed by atmospheric chemical ionization, this setup was capable of in situ MS monitoring of short-lived EC intermediates with enhanced sensitivity. This setup also realized precise measurement and control of the electrode potential during in situ EC-MS analysis, which can provide detailed information on the interplay of reaction pathways under different electrode potentials. Taking the EC reductive cross coupling of nitroarenes with arylboronic acids as an example, SSV-MS had identified 13 compounds among four reaction pathways. Among these, the electrode potential of active nitrene and cross coupling intermediates were measured for the first time and the structure of the nitroso coupling complex was also confirmed by MS. With the systematic measurement of electrode potential of the intermediates and products, SSV-MS had clearly mapped out the synergies and competitions between different reaction pathways, offering key insights for optimizing reaction conditions and investigating reaction mechanisms for EC research.
Collapse
Affiliation(s)
- Xi Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianxiong Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Zhenwei Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Liu CY, Chen Y, Hu J. Identification of the Electrogenerated Hidden Nitrenium Ions by In Situ Mass Spectrometry. Anal Chem 2024; 96:3354-3361. [PMID: 38295431 DOI: 10.1021/acs.analchem.3c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The identification of the electrogenerated reactive intermediates is essential for an in-depth understanding of the electroredox processes. Although various short-lived intermediates are well characterized by coupling electrochemistry with mass spectrometry (EC/MS), many electrogenerated transient species (τ < 1 μs) are still rarely captured by the currently available EC/MS approaches. Here, we present a low-delay coupling device, which was constructed by decorating a microelectrode into the front tip of a microsized ion emitter. For the first time, the in situ detection of a previously hidden intermediate, i.e., the transient nitrenium ion of carbazole (τ = 333 ns), was achieved. The electrochemical generation of indole nitrenium ion, whose half-life is estimated to be shorter compared to the carbazole nitrenium ion due to less resonance stabilization, was also confirmed by direct observation. This clog-free microelectrode/ion emitter is cheap and easy to fabricate and offers a general and powerful approach to monitoring the fast reactions of electrogenerated reactive intermediates. We believe that our integrated EC/MS approach holds substantial potential for broad applicability, particularly in probing the intricate and ultrafast electroredox processes occurring at the electrode-solution interface.
Collapse
Affiliation(s)
- Chun-Yan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jun Hu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
3
|
FNU PIJ, Tanim-Al-Hassan M, Yaroshuk T, Ai Y, Chen H. Absolute Quantitation of Peptides and Proteins by Coulometric Mass Spectrometry After Derivatization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117153. [PMID: 38009161 PMCID: PMC10673616 DOI: 10.1016/j.ijms.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Peptide/protein quantitation using mass spectrometry (MS) is advantageous due to its high sensitivity. Traditional absolute peptide quantitation methods rely on making calibration curves using peptide standards or isotope-labelled peptide standards, which are expensive and take time to synthesize. A method which can eliminate the need for using standards would be beneficial. Recently, we developed coulometric mass spectrometry (CMS) which can be used to quantify peptides that are oxidizable (e.g., those containing tyrosine or tryptophan), without using peptide standard. The method is based on electrochemical oxidation of peptides followed by MS to measure the oxidation yield. However, it cannot be directly used to quantify peptides without oxidizable residues. To extend this method for quantifying peptides/proteins in general, in this study, we adopted a derivatization strategy, in which a target peptide is first tagged with an electroactive reagent such as monocarboxymethylene blue NHS ester (MCMB-NHS ester), followed with quantitation by CMS. To illustrate the power of this method, we have analyzed peptides MG and RPPGFSPFR. The quantification error was less than 5%. Using RPPGFSPFR as an example, the quantitation sensitivity of the technique was found to be 0.25 pmol. Furthermore, we also used the strategy to quantify proteins cytochrome C and β-casein with an error of 2-26%.
Collapse
Affiliation(s)
- Praneeth Ivan Joel FNU
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Md. Tanim-Al-Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Timothy Yaroshuk
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
4
|
Cui C, Chen X, Liu C, Zhu Y, Zhu L, Ouyang J, Shen Y, Zhou Z, Qi F. In Situ Reactor-Integrated Electrospray Ionization Mass Spectrometry for Heterogeneous Catalytic Reactions and Its Application in the Process Analysis of High-Pressure Liquid-Phase Lignin Depolymerization. Anal Chem 2021; 93:12987-12994. [PMID: 34520172 DOI: 10.1021/acs.analchem.1c02710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Process analysis of heterogeneous catalytic reactions such as lignin depolymerization is essential to understand the reaction mechanism at the molecular level, but it is always challenging due to harsh conditions. Herein, we report an operando process analysis strategy by combining a microbatch reactor with high-resolution mass spectrometry (MS) via a reactor-integrated electrospray ionization (R-ESI) technique. R-ESI-MS expands the applications of traditional in situ MS to a heterogeneous and high-pressure liquid-phase system. With this strategy, we present the evolution of a series of monomers, dimers, and oligomers during lignin depolymerization under operando conditions (methanol solvent, 260 °C, ∼8 MPa), which is the first experimental elucidation of a progressive depolymerization pathway and evidence of repolymerization of active monomers. The proposed R-ESI-MS is crucial in probing depolymerization intermediates of lignin; it also provides a flexible strategy for process analysis of heterogeneous catalytic reactions under operando conditions.
Collapse
Affiliation(s)
- Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Xiamin Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Chunjiang Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yanan Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jianfeng Ouyang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yang Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|