1
|
Yin B, Zeng Z, Zeng H, Hu H, Zhang M. Open-Source Absorbance Detector with Multiple Deep UV-LEDs for On-Capillary Multiwavelength Detection at a Single Point. Anal Chem 2024; 96:14348-14353. [PMID: 39185905 DOI: 10.1021/acs.analchem.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
On-capillary ultraviolet photometric detection (UV-PD) in a multiwavelength mode provides comprehensive analytical information. However, achieving single-point multiwavelength UV-PD for capillary-scale instruments typically requires high-cost and complex devices. This study presents the development of a cost-effective, open-source absorbance detector for on-capillary multiwavelength detection. The detector employs three deep UV light-emitting diodes emitting at 235, 255, and 278 nm as light sources, each coupled with its own photodetector for independent detection channels. The components are housed using 3D-printed parts, with an Arduino board used for data acquisition. Three individual optical paths, formed by three slits (60 μm width ×1 mm length), surround the measured capillary and converge at the same detection point. The detector demonstrates simultaneous multiwavelength detection of medicines for both HPLC and CE. This development represents an advancement in portable, low-cost analytical instrumentation, with broad implications for various fields of application.
Collapse
Affiliation(s)
- Bangjie Yin
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zihan Zeng
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Honghua Hu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
2
|
Zeng J, Sun K, Chen S, Zhang X, Wang X, Zhang B. A Microfluidic-Fabricated Rod Sprayer for Nanoelectrospray Mass Spectrometry. Anal Chem 2024; 96:3989-3993. [PMID: 38315070 DOI: 10.1021/acs.analchem.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The nanoelectrosprayer is a key device in the hyphenation of nanoLC-ESI-MS, and its development plays a crucial role in pushing forward the mining depth of biological discovery and industrialization of omics science. In this work, a new type of nanoelectrospray emitter, a rod sprayer, was developed based on microfluidic manufacture. Due to its porous silica structure, the rod sprayer in effect worked as a multinozzle sprayer, which is composed of a bunch of micrometer sized spray channels. Without the need for sophisticated microfabrication equipment, a superclean environment, or a complicated assembling process, such sprayer rods can be facilely fabricated in a mass production style: 3,600 rods with excellent monodispersity have been fabricated in 1 h, and rod sprayers thus made have demonstrated excellent intraday, interday, and interbatch reproducibilities: RSD = 1.9, 4.9, and 6.1%, respectively. The rod sprayer can generate stable electrospray in a wide voltage range from 2.6 to 3.2 kV and flow rates from 50 to 1000 nL/min, covering typical flow rates of subnanoLC, nanoLC, to microLC, and work steadily even under complex matrix environments (e.g., Hank's balanced salt solution containing sodium, magnesium, and calcium ions) without clogging. Meanwhile, the rod sprayers exhibited 200-1800% ionization efficiency enhancement in comparison with commonly used tapered tip emitters, for small molecule drugs, peptides, and proteins, respectively, and provided a broadened linear dynamic range of 4 orders of magnitude. The excellent characteristics of the rod sprayer, together with its small size and mass production capacity, should provide a high quality, high durability, high consistency, and disposable use-supported nanoelectrospray solution for MS-based bioanalyses.
Collapse
Affiliation(s)
- Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Bayındır S, Aydoğan C, Denizli A. Preparation of chiral monoliths with new modulation of the monolith surface chemistry for the enantioseparation of chiral drugs by nano-liquid chromatography. J Chromatogr A 2024; 1713:464573. [PMID: 38101302 DOI: 10.1016/j.chroma.2023.464573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Here, we report the preparation and application of two new chiral monoliths for the enantioseparation of chiral drugs in nano-LC. Using 3‑chloro-2-hydroxypropylmethacrylate (HPMA-Cl, 2) as a precursor monomer, two different chiral monomers namely, Nα-Boc-Lys-HPMA (3A) and Nα-Fmoc-Lys-HPMA (3B) were synthesized and used for the preparation of chiral polymer monoliths. The first monolithic column (referred to as monolith I) was prepared by an in-situ polymerization of Nα-Boc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate while the second monolithic column (referred to as monolith II) was prepared by an in-situ polymerization of Nα-Fmoc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate as the crosslinker. Methanol and 1-propanol were used as the porogenic solvents. The prepared chiral monoliths were investigated for the enantioseparation of chiral drugs, including β-blockers (e.g., atenolol, propranolol, metoprolol) and anti-inflammatory drugs (e.g., ketoprofen, ibuprofen, flurbiprofen, naproxen, etodolac). The enantioseparation could be achieved via the formation of π-π interactions on the aromate-rich and aromate-poor chiral molecules while enantioseparation mechanism of chiral drugs included mostly π-π interactions and hydrogen bonding. Monolith II showed better enantioselectivity than Monolith I and the resolution values up to 2.12 were successfully achieved.
Collapse
Affiliation(s)
- Sinan Bayındır
- Department of Chemistry, Bingöl University, Bingöl, Türkiye
| | - Cemil Aydoğan
- Department of Chemistry, Bingöl University, Bingöl, Türkiye; Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye; Department of Food Engineering, Bingöl University, Bingöl, Türkiye.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
4
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
5
|
Nestor L, De Bundel D, Vander Heyden Y, Smolders I, Van Eeckhaut A. Unravelling the brain metabolome: A review of liquid chromatography - mass spectrometry strategies for extracellular brain metabolomics. J Chromatogr A 2023; 1712:464479. [PMID: 37952387 DOI: 10.1016/j.chroma.2023.464479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals. In vivo samples are obtained through microdialysis, cerebral open-flow microperfusion or solid-phase microextraction. The analytes of potential interest are typically low in concentration and can have a wide range of physicochemical properties. Liquid chromatography coupled to mass spectrometry has proven its usefulness in brain metabolomics. It allows sensitive and specific analysis of low sample volumes, obtained through different approaches. Several strategies for the analysis of the extracellular fluid have been proposed. The most widely used approaches apply sample derivatization, specific stationary phases and/or hydrophilic interaction liquid chromatography. Miniaturization of these methods allows an even higher sensitivity. The development of chiral metabolomics is indispensable, as it allows to compare the enantiomeric ratio of compounds and provides even more challenges. Some limitations continue to exist for the previously developed methods and the development of new, more sensitive methods remains needed. This review provides an overview of the methods developed for sampling and liquid chromatography-mass spectrometry analysis of the extracellular metabolome.
Collapse
Affiliation(s)
- Liam Nestor
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
6
|
Al-Sulaimi S, Kushwah R, Abdullah Alsibani M, El Jery A, Aldrdery M, Ashraf GA. Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals. Molecules 2023; 28:6175. [PMID: 37687004 PMCID: PMC10489017 DOI: 10.3390/molecules28176175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Chiral separation, the process of isolating enantiomers from a racemic mixture, holds paramount importance in diverse scientific disciplines. Using chiral separation methods like chromatography and electrophoresis, enantiomers can be isolated and characterized. This study emphasizes the significance of chiral separation in drug development, quality control, environmental analysis, and chemical synthesis, facilitating improved therapeutic outcomes, regulatory compliance, and enhanced industrial processes. Capillary electrophoresis (CE) has emerged as a powerful technique for the analysis of chiral drugs. This review also highlights the significance of CE in chiral drug analysis, emphasizing its high separation efficiency, rapid analysis times, and compatibility with other detection techniques. High-performance liquid chromatography (HPLC) has become a vital technique for chiral drugs analysis. Through the utilization of a chiral stationary phase, HPLC separates enantiomers based on their differential interactions, allowing for the quantification of individual enantiomeric concentrations. This study also emphasizes the significance of HPLC in chiral drug analysis, highlighting its excellent resolution, sensitivity, and applicability. The resolution and enantiomeric analysis of nonsteroidal anti-inflammatory drugs (NSAIDs) hold great importance due to their chiral nature and potential variations in pharmacological effects. Several studies have emphasized the significance of resolving and analyzing the enantiomers of NSAIDs. Enantiomeric analysis provides critical insights into the pharmacokinetics, pharmacodynamics, and potential interactions of NSAIDs, aiding in drug design, optimization, and personalized medicine for improved therapeutic outcomes and patient safety. Microfluidics systems have revolutionized chiral separation, offering miniaturization, precise fluid control, and high throughput. Integration of microscale channels and techniques provides a promising platform for on-chip chiral analysis in pharmaceuticals and analytical chemistry. Their applications in techniques such as high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) offer improved resolution and faster analysis times, making them valuable tools for enantiomeric analysis in pharmaceutical, environmental, and biomedical research.
Collapse
Affiliation(s)
- Sulaiman Al-Sulaimi
- Department of Biological Science and Chemistry, University of Nizwa, Nizwa 611, Oman; (S.A.-S.); (R.K.); (M.A.A.)
| | - Reveka Kushwah
- Department of Biological Science and Chemistry, University of Nizwa, Nizwa 611, Oman; (S.A.-S.); (R.K.); (M.A.A.)
| | - Mohammed Abdullah Alsibani
- Department of Biological Science and Chemistry, University of Nizwa, Nizwa 611, Oman; (S.A.-S.); (R.K.); (M.A.A.)
| | - Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | - Moutaz Aldrdery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | | |
Collapse
|
7
|
Aydoğan C, Beltekin B, Alharthi S, Ağca CA, Erdoğan İY. Nano-liquid chromatography with monolithic stationary phase based on naphthyl monomer for proteomics analysis. J Chromatogr A 2023; 1690:463804. [PMID: 36689803 DOI: 10.1016/j.chroma.2023.463804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Monolithic poly(2-vinylnaphthalene-co-divinylbenzene) columns were introduced, for the first time, and were evaluated as the separation media for nano-liquid chromatography (nano-LC). These columns were prepared by in-situ polymerization of 2-vinylnaphthalene (2-VNA) as the functional monomer and divinylbenzene (DVB) as the crosslinker in a fused silica capillary column of 50 µm i.d. Various porogenic solvents, including tetrahydrofuran (THF), dodecanol and toluene were used for morphology optimization. Final monolithic column (referred to as VNA column) was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. Alkylbenzenes (ABs), and polyaromatic hydrocarbons (PAHs) were separated using the VNA column while the column offered excellent hydrophobic and π-π interactions under reversed-phase conditions. Theoretical plates number up to 41,200 plates/m in isocratic mode for ethylbenzene could be achieved. The potential of the final VNA column was demonstrated with a gradient elution in the separation of six intact proteins, including ribonuclease A (RNase A), cytochrome C (Cyt C), lysozyme (Lys), β-lactoglobulin (β-lac), myoglobin (My) and α-chymotrypsinogen (α-chym) in nano LC system. The column was then applied to the peptide analysis of trypsin digested cytochrome C, allowing a high peak capacity up to 1440 and the further proteomics analysis of COS-7 cell line was attempted applying the final monolithic column in nano-LC UV system.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye; Department of Food Engineering, Bingöl University, Bingöl, Türkiye; Department of Chemistry, Bingöl University, Bingöl, Türkiye.
| | - Büşra Beltekin
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Can Ali Ağca
- Department of Molecular Biology, Bingöl University, Bingöl, Türkiye
| | - İbrahim Y Erdoğan
- Department of Chemistry, Bingöl University, Bingöl, Türkiye; Faculty of Health Sciences, Bingöl University, Bingöl, Türkiye
| |
Collapse
|
8
|
Nano-Liquid Chromatography with a New Monolithic Column for the Analysis of Coenzyme Q10 in Pistachio Samples. Molecules 2023; 28:molecules28031423. [PMID: 36771088 PMCID: PMC9920066 DOI: 10.3390/molecules28031423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a vital substance found throughout body. It helps convert food into energy and is eaten small amounts in foods. CoQ10 has gained great interest in recent years as a potential candidate for the treatment of various diseases. The content of CoQ10 in food samples is a crucial quality index for foods. Therefore, the development of sensitive separation and quantification method for determining the amount of CoQ10 in various samples, especially in foods, is an important issue, especially for food nutrition. In this study, a new, miniaturized monolithic column was developed and applied for the determination of CoQ10 in pistachio samples by nano-liquid chromatography (nano-LC). The monolithic column with a 50 µm i.d. was prepared by in situ polymerization using laurylmethacrylate (LMA) as the main monomer and ethylene dimethacrylate (EDMA) as the crosslinker. Methanol (MeOH) and polyethyleneglycol (PEG) were used as porogenic solvents. The final monolithic column was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. The monolithic column with a 50 µm i.d. was applied to the analysis of CoQ10 in pistachio samples in nano-LC. This analytical method was validated by means of sensitivity, linearity, precision, recovery, and repeatability. The LOD and LOQ values were 0.05 and 0.48 µg/kg, respectively. The developed method using the monolithic column was optimized to achieve very sensitive analyses of CoQ10 content in the food samples. The applicability of the method was successfully demonstrated by the analysis of CoQ10 in pistachio samples.
Collapse
|
9
|
Beltekin B, Alharthi S, Aydoğan C. Novel open‐tubular columns with highly hydrophobic stationary phase for peptide and protein separation by nano‐liquid chromatography. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Büşra Beltekin
- Food Analysis and Research Laboratory Bingöl University Bingöl Türkiye
| | - Sarah Alharthi
- Department of Chemistry, College of Science Taif University Taif Saudi Arabia
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory Bingöl University Bingöl Türkiye
- Department of Chemistry Bingöl University Bingöl Türkiye
- Department of Food Engineering Bingöl University Bingöl Türkiye
| |
Collapse
|
10
|
Kartsova LA, Bessonova EA, Deev VA, Kolobova EA. Current Role of Modern Chromatography with Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy in the Investigation of Biomarkers of Endometriosis. Crit Rev Anal Chem 2023; 54:2110-2133. [PMID: 36625278 DOI: 10.1080/10408347.2022.2156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis has a wide range of clinical manifestations, and the disease course is unpredictable, making the diagnosis a challenging task. Despite significant advances in the pathophysiology of endometriosis and various proposed theories, the exact etiology is not fully understood and is still unknown. The most commonly used biomarker of endometriosis is CA-125, however, it is nonspecific and is applied for cancers diagnosis. Therefore, the development of reliable noninvasive diagnostic tests for the early diagnosis of endometriosis remains one of the top priorities. Omics technologies are very promising approaches for constructing diagnostic models and biomarker discovery. Their use can greatly facilitate the study of such a complex disease as endometriosis. Nowadays, powerful analytical platforms commonly used in omics, such as gas and liquid chromatography with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, have proven to be a promising tools for biomarker discovery. The aim of this review is to summarize the various features of the analytical approaches, practical challenges and features of gas and liquid chromatography with MS and NMR spectroscopy (including sample processing protocols, technological advancements, and methodology) used for profiling of metabolites, lipids, peptides and proteins in physiological fluids and tissues from patients with endometriosis. In addition, this report devotes special attention to the issue of how comprehensive analyses of these profiles can effectively contribute to the study of endometriosis. The search query included reports published between 2012 and 2022 years in PubMed, Web-of-Science, SCOPUS, Science Direct.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Alekseevna Kolobova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- The Federal State Institute of Public Health 'The Nikiforov Russian Center of Emergency and Radiation Medicine', The Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| |
Collapse
|
11
|
ACE2 and SARS-CoV-2-Main Protease Capillary Columns for Affinity Chromatography: Testimony of the Binding of Dexamethasone and its Carbon Nanotube Nanovector. Chromatographia 2022; 85:773-781. [PMID: 35855682 PMCID: PMC9275543 DOI: 10.1007/s10337-022-04181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
In this paper, each of the two following proteins, the angiotensin-converting enzyme 2 (ACE2) and the Main protease (Main pro) of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) were grafted for the first time on homemade neutravidin poly(GMA-co-EDMA) capillary columns for the research of their ligands. The effect of the column diameter on the quantity of immobilized biotinylated protein was studied. For a capillary length of 40 mm, when its internal diameter varied from 75 to 25 μm, the grafted quantity of ACE2 decreased by 85% (from 1.50 to 0.24 μg). Among all the studied ligands, a particular vigilance has been given for dexamethasone, a widely used molecule today for adult patients hospitalized with SARS-CoV-2. Competition experiments were performed with SARS-CoV-2 Receptor Binding Domain used as reference molecule with the ACE2 affinity column to assess the orthosteric binding site of dexamethasone (Dex) on ACE2. This ligand was then immobilized on Multiwall Carbon Nanotubes (Dex/MWCNT). By comparison of the normalized breakthrough curves measured for Dex and Dex/MWCNT on both the ACE2 and Main pro affinity columns, it was showed for the first time that nanovectorisation of Dex with MWCNT enhanced and stabilized its binding to both ACE2 and Main pro. This last result reinforced the use of Dex and the interest of MWCNT for boosting immune health against COVID 19.
Collapse
|
12
|
Liu Y, Wen H, Chen S, Wang X, Zhu X, Luo L, Wang X, Zhang B. Mass Fabrication of Capillary Columns Based on Centrifugal Packing. Anal Chem 2022; 94:8126-8131. [PMID: 35650662 DOI: 10.1021/acs.analchem.2c00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Packed capillary columns have become the standard front-end separation device for mass spectrometry-based proteomics. The development of simple, fast, and robust capillary column technology, especially that with mass-fabrication capacity, can greatly improve analytical throughput and reproducibility in omics research. In this technical note, we report a centrifugal packing technology, which has the capability to mass fabricate high quality capillary columns with a 2886 columns/day fabrication throughput. The centrifugally packed columns presented significantly improved efficiency (reduced plate height hmin = 1.6, 37%-40% improvement compared with slurry packed columns), advanced kinetic performance limit, and excellent column-to-column reproducibility (2.0% RSD for retention time, 50 columns). Such columns enabled ∼5300 HeLa proteins identified in single-shot proteomic analysis, displaying both intercolumn and inter-run retention time stability (retention time RSD = 0.94% between nine replicates on three columns for probing peptide sequence). The mass-fabrication technology reported in this technical note may support disposable use of high quality chromatographic columns in large-scale bioanalysis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanrong Wen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojuan Wang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xudong Zhu
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | | | | | - Bo Zhang
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Aydoğan C, Erdoğan İY, El-Rassi Z. Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography. Molecules 2022; 27:molecules27072306. [PMID: 35408705 PMCID: PMC9000833 DOI: 10.3390/molecules27072306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl 12000, Turkey
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Department of Food Engineering, Bingöl University, Bingöl 12000, Turkey
- Correspondence: ; Tel.: +90-426-216-19-58; Fax: +90-426-216-00-33
| | - İbrahim Y. Erdoğan
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Faculty of Health Sciences, Bingöl University, Bingöl 12000, Turkey
| | - Ziad El-Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
14
|
Cruz JC, Souza IDD, Lanças FM, Queiroz MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A 2022; 1668:462925. [DOI: 10.1016/j.chroma.2022.462925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
15
|
Demir N, Aydoğan C. ProFlow nano-liquid chromatography with a graphene oxide-functionalized monolithic nano-column for the simultaneous determination of chloramphenicol and chloramphenicol glucuronide in foods. J Food Sci 2022; 87:1721-1730. [PMID: 35315070 DOI: 10.1111/1750-3841.16121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Chloramphenicol (CAP) is an effective antibiotic with broad spectrum against gram-positive and gram-negative bacteria, while it is used to treat various infections in animals. Although CAP is banned for usage in the livestock products including, milk, honey, seafood, and royal jelly, CAP is still often detected in foods of animal origin, posing a threat to consumer health. The use of CAP is restricted in many countries due to its side effect in human metabolic process according to the Expert Committee on Food Additives (ECFA) recommendation. Chloramphenicol glucuronide (CAPG) is also a metabolic product of CAP, which may be a hazardous chemical for human health. Therefore, the development of sensitive separation and quantification method is an important issue, especially for food safety. Herein, we reported the preparation and application of a monolithic nano-column for CAP and CAPG analyses in foods by ProFlow Nano liquid chromatography (ProFlow Nano LC). The monolithic nano-column was prepared by an in situ polymerization using 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA) and followed graphene oxide (GO) modification. After characterization, the monolithic nano-column was used for the analysis of CAP and CAPG in honey and milk samples by ProFlow Nano LC. The whole method was validated in terms of linearity, sensitivity, precision, recovery, and repeatability, while it led to obtain high sensitivity with limit of quantification was found as 0.02 µg/kg for CAP. Limit of quantification for CAPG was found as 0.08 µg/kg. The developed method with monolithic nano-column was optimized to achieve very sensitive analyses of CAP and CAPG in the food samples. The applicability of the nano-column was successfully demonstrated by the analysis of CAP and CAPG in milk and honey samples. PRACTICAL APPLICATION: This article describes the preparation and application of a monolithic nano-column for the separation and determination of chloramphenicol and chloramphenicol glucuronide in food samples by ProFlow Nano LC. The use of new and advanced techniques is a crucial issue in the food science and technology. In this sense, this study demonstrated a new food analysis method using advanced instrumental technique with a homemade monolithic nano-column.
Collapse
Affiliation(s)
- Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Food Processing, Vocational School of Food, Agriculture and Livestock, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey
| |
Collapse
|
16
|
Şeker S, Alharthi S, Aydoğan C. Open tubular nano-liquid chromatography with a new polylysine grafted on graphene oxide stationary phase for the separation and determination of casein protein variants in milk. J Chromatogr A 2022; 1667:462885. [DOI: 10.1016/j.chroma.2022.462885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
|
17
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: Analytical Opportunities and Challenges. Anal Chem 2022; 94:366-381. [PMID: 34813295 PMCID: PMC8756396 DOI: 10.1021/acs.analchem.1c04678] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| |
Collapse
|
18
|
Guillaume YC, André C. Immobilization of the SARS-CoV-2-receptor binding domain onto methacrylate-based monoliths for nano LC at 30 nL min -1 and application for research of its ligands. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:156-164. [PMID: 34927183 DOI: 10.1039/d1ay01913a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the design of novel potent molecules against therapeutic protein targets produced in a low quantity or that are very expensive, the development of miniaturized analytical techniques is of crucial importance. One challenging target is the receptor binding domain (RBD) of the SARS-CoV-2-spike protein (S), which mediates the binding of the virus to host cells. In the present study, the RBD protein was thus immobilized on polymethacrylate monoliths prepared in a miniaturized capillary column (25 μm internal diameter; 70 mm length) by in situ polymerization, which could offer low backpressure in Nano LC at 30 nL min-1. The immobilized quantity of the expensive RBD protein on the organic monolith was very low, in the submicrogram range, i.e., 0.060 μg. The immobilization method reduced non-selective interactions between the ligand and the organic monolith matrix and maintained the functionality of RBD due to the high activity rate (96%). The performance of this miniaturized affinity capillary column was demonstrated for the rapid evaluation of a recognition assay induced by 1,2,3,4,6-pentagalloyl glucose (PGG), a known ligand of RBD, and by five other molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to reveal the existence of only one type of binding site for three ligands of RBD, namely carbenoxolone, simeprevir and irinotecan. All these results showed the potential of our analytical miniaturized affinity system for the determination of interactions between potential ligands and immobilized RBD of SARS-CoV-2 to aid in the battle against COVID-19.
Collapse
Affiliation(s)
- Yves Claude Guillaume
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
| | - Claire André
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
- CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| |
Collapse
|
19
|
Non-psychoactive cannabinoids identification by linear retention index approach applied to a hand-portable capillary liquid chromatography platform. Anal Bioanal Chem 2022; 414:6341-6353. [DOI: 10.1007/s00216-021-03871-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
|
20
|
Patel SV, Lurie IS. The use of portable separation devices for forensic analysis: A review of recent literature. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Günyel Z, Aslan H, Demir N, Aydoğan C. Nano-liquid chromatography with a new nano-structured monolithic nanocolumn for proteomics analysis. J Sep Sci 2021; 44:3996-4004. [PMID: 34499809 DOI: 10.1002/jssc.202100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Herein, we report the preparation and application of a new nano-structured monolithic nanocolumn based on modified graphene oxide using narrow fused silica capillary column (e.g., 50 μm internal diameter). The nanocolumn was prepared by an in situ polymerization using butyl methacrylate, ethylene dimethacrylate, and methacryloyl graphene oxide nanoparticles. Dimethyl formamide and water were used as the porogenic solvent. After polymerization, the obtained nanocolumn was coated with dimethyloctadecylchlorosilane in order to enhance the hydrophobicity. Both isocratic and gradient nano-liquid chromatographic separations for small molecules (e.g., alkylbenzenes) and macromolecules (e.g., intact proteins) were performed. Theoretical plates number up to 3600 plates/m in isocratic mode for propylbenzene were achieved. It was demonstrated that the feasibility of graphene oxide modified monolithic nanocolumn for high-efficiency and high-throughput nanoscale proteomics analysis. The high resolving power of monolithic nanocolumn yielded sensitive protein separation with narrower peak width while a high-resolution analysis of peptides from trypsin-digested cytochrome C could be obtained. Graphene oxide based monolithic nanocolumns are promising and can allow to powerful tools for trace proteom sample analysis.
Collapse
Affiliation(s)
- Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| |
Collapse
|
22
|
André C, Guillaume YC. Development of nano affinity columns for the study of ligand (including SARS-CoV-2 related proteins) binding to heparan sulfate proteoglycans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3050-3058. [PMID: 34132262 DOI: 10.1039/d1ay00506e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interactions of heparan sulfate proteoglycans (HSPGs) present on the cell surface with target proteins lead to cell signaling and they are considered as viral receptors. The analysis of the recognition mechanism between HSPG and its potential ligands and high-throughput screening in drug discovery thus remain important challenges. Glycidyl methacrylate-based monoliths were thus prepared in situ in miniaturized capillary columns (internal diameter 75 μm) and HSPG was grafted onto them by the use of the Schiff base method. The quantity of grafted HSPG was in the nanogram range (11 nanograms per cm of capillary length). This is of significant importance when working with less available or expensive biological material. Other advantages of our miniaturized capillary column are as follows: (i) the immobilization process of HSPG onto the organic monolithic support was reliable and reproducible. (ii) The resultant affinity capillary column showed a strong resistance to changes in temperature and pH and a negligible non-specific interaction. So as to confirm the proper functioning of our miniaturized capillary column, the molecular recognition by HSPG of five selected compounds including three ligands of interest related to SARS-CoV-2 was studied.
Collapse
Affiliation(s)
- Claire André
- Univ Franche - Comté, F-25000 Besançon, France. and EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France and CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| | - Yves Claude Guillaume
- Univ Franche - Comté, F-25000 Besançon, France. and EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France and CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| |
Collapse
|
23
|
Aydoğan C, Aslan H, Günyel Z, Demir N, Erdoğan İY, Alharthi S, El Rassi Z. Graphene oxide-octadecylsilane incorporated monolithic nano-columns with 50 μm id and 100 μm id for small molecule and protein separation by nano-liquid chromatography. Electrophoresis 2021; 42:2637-2646. [PMID: 34213776 DOI: 10.1002/elps.202100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
In this study, graphene oxide-octadecylsilane incorporated monolithic nano-columns were developed for protein analysis by nano liquid chromatography (nano LC). The monolithic column with 100 μm id was first prepared by an in situ polymerization using ethylene dimethacrylate (EDMA), 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl), and methacryloyl graphene oxide nanoparticles (MGONPs). MGONPs were synthesized by the treatment of 3-(trimethoxysilyl)propylmethacrylate (TMSPM) and GO. Tetrahydrofuran (THF) and dodecanol were used as the porogenic solvent. The resulting column was functionalized by dimethyloctadecylch lorosilane (DODCS) for the enhancement of hydrophobicity. The functionalization greatly improved the baseline separation of hydrophobic compounds such as polyaromatic hydrocarbons (PAHs). The optimized monolith with respect to total polymerization mixture was characterized by using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) X-ray diffraction (XRD) and chromatographic analyses. The blank monoliths without functionalization exhibited poor separation while a good separation performance of MGONPs functionalized monoliths was achieved. The monolith with 100 μm id was evaluated in protein separation in nano LC using RNase A, Cytochrome C, Lysozyme, Trypsin, and Ca isozyme II as the test proteins. It was shown that protein separation mechanism was based on large π-system of GO and hydrophobicity of the monolithic structure. Theoretical plates number up to 57 600 plates were achieved. The nano-column with 50 μm id was also prepared using the same polymerization mixture under the same chemical conditions. These nano-columns were employed for protein separation by nano LC, and the dependence of both nano-column performance on the internal diameter was also discussed.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - İbrahim Y Erdoğan
- Department of Chemistry, Bingöl University, Bingöl, Turkey.,Faculty of Health Sciences, Bingöl University, Bingöl, Turkey
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ziad El Rassi
- Department of Chemistry Oklahoma State University, Stillwater, Oklahloma, USA
| |
Collapse
|
24
|
Broeckhoven K, Desmet G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal Chem 2020; 93:257-272. [DOI: 10.1021/acs.analchem.0c04466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - G. Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|