1
|
Wang J, Xue B, Awoyemi O, Yuliantoro H, Mendis LT, DeVor A, Valentine SJ, Li P. Parallel sample processing for mass spectrometry-based single cell proteomics. Anal Chim Acta 2024; 1329:343241. [PMID: 39396304 PMCID: PMC11471953 DOI: 10.1016/j.aca.2024.343241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Single cell mass spectrometry (scMS) has shown great promise for label free proteomics analysis recently. To present single cell samples for proteomics analysis by MS is not a trivial task. Existing methods rely on robotic liquid handlers to scale up sample preparation throughput. The cost associated with specialized equipment hinders the broad adoption of these workflows, and the sequential sample processing nature limits the ultimate throughput. RESULTS In this work, we report a parallel sample processing workflow that can simultaneously process 10 single cells without the need of robotic liquid handlers for scMS. This method utilized 3D printed microfluidic devices to form reagent arrays on a glass slide, and a magnetic beads-based streamlined sample processing workflow to present peptides for LC-MS detection. We optimized key operational parameters of the method and demonstrated the quantification consistency among 10 parallel processed samples. Finally, the utility of the method in differentiating cell lines and studying the proteome change induced by drug treatment were demonstrated. SIGNIFICANCE The present method allows parallel sample processing for single cells without the need of expensive liquid handlers, which has great potential to further improve throughput and decrease the barrier for single cell proteomics.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Bo Xue
- Shared Research Facilities, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Herbi Yuliantoro
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Lihini Tharanga Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Zou Z, Peng Z, Bhusal D, Wije Munige S, Yang Z. MassLite: An integrated python platform for single cell mass spectrometry metabolomics data pretreatment with graphical user interface and advanced peak alignment method. Anal Chim Acta 2024; 1325:343124. [PMID: 39244309 PMCID: PMC11462640 DOI: 10.1016/j.aca.2024.343124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS techniques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS data analysis tools is equally important. As most published software packages are not specifically designed for pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI) and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to improve pretreatment efficiency.
Collapse
Affiliation(s)
- Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Deepti Bhusal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Shakya Wije Munige
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
3
|
Krull KK, Ali SA, Krijgsveld J. Enhanced feature matching in single-cell proteomics characterizes IFN-γ response and co-existence of cell states. Nat Commun 2024; 15:8262. [PMID: 39327420 PMCID: PMC11427561 DOI: 10.1038/s41467-024-52605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Proteome analysis by data-independent acquisition (DIA) has become a powerful approach to obtain deep proteome coverage, and has gained recent traction for label-free analysis of single cells. However, optimal experimental design for DIA-based single-cell proteomics has not been fully explored, and performance metrics of subsequent data analysis tools remain to be evaluated. Therefore, we here formalize and comprehensively evaluate a DIA data analysis strategy that exploits the co-analysis of low-input samples with a so-called matching enhancer (ME) of higher input, to increase sensitivity, proteome coverage, and data completeness. We assess the matching specificity of DIA-ME by a two-proteome model, and demonstrate that false discovery and false transfer are maintained at low levels when using DIA-NN software, while preserving quantification accuracy. We apply DIA-ME to investigate the proteome response of U-2 OS cells to interferon gamma (IFN-γ) in single cells, and recapitulate the time-resolved induction of IFN-γ response proteins as observed in bulk material. Moreover, we uncover co- and anti-correlating patterns of protein expression within the same cell, indicating mutually exclusive protein modules and the co-existence of different cell states. Collectively our data show that DIA-ME is a powerful, scalable, and easy-to-implement strategy for single-cell proteomics.
Collapse
Affiliation(s)
- Karl K Krull
- German Cancer Research Center (DKFZ), Heidelberg, Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Syed Azmal Ali
- German Cancer Research Center (DKFZ), Heidelberg, Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.
- Heidelberg University, Medical Faculty, Heidelberg, Germany.
| |
Collapse
|
4
|
Kwon Y, Woo J, Yu F, Williams SM, Markillie LM, Moore RJ, Nakayasu ES, Chen J, Campbell-Thompson M, Mathews CE, Nesvizhskii AI, Qian WJ, Zhu Y. Proteome-Scale Tissue Mapping Using Mass Spectrometry Based on Label-Free and Multiplexed Workflows. Mol Cell Proteomics 2024; 23:100841. [PMID: 39307423 DOI: 10.1016/j.mcpro.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ∼3500 proteins at a spatial resolution of 50 μm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provides robust protein quantifications in identifying differentially abundant proteins and spatially covariable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial coexpression analysis.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Jongmin Woo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States.
| | - Ying Zhu
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, California, United States.
| |
Collapse
|
5
|
Rivandi M, Franken A, Yang L, Abramova A, Stamm N, Eberhardt J, Gierke B, Beer M, Fehm T, Niederacher D, Pawlak M, Neubauer H. Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment. J Transl Med 2024; 22:848. [PMID: 39304879 DOI: 10.1186/s12967-024-05616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Traditional genomic profiling and mutation analysis of single cells like Circulating Tumor Cells (CTCs) fails to capture post-translational and functional alterations of proteins, often leading to limited treatment efficacy. To overcome this gap, we developed a miniaturized 'protein analysis on the single cell level' workflow-baptized ZeptoCTC. It integrates established technologies for single-cell isolation with sensitive Reverse Phase Protein Array (RPPA) analysis, thus enabling the comprehensive assessment of multiple protein expression and activation in individual CTCs. METHODS The ZeptoCTC workflow involves several critical steps. Firstly, individual cells are labeled and isolated. This is followed by cell lysis and the printing of true single cell lysate preparations onto a ZeptoChip using a modified micromanipulator, CellCelector™. The printed lysates then undergo fluorescence immunoassay RPPA protein detection using a ZeptoReader. Finally, signal quantification is carried out with Image J software, ensuring precise measurement of multiple protein levels. RESULTS The efficacy of ZeptoCTC was demonstrated through various applications. Initially, it was used for measuring EpCAM protein expression, a standard marker for CTC detection, revealing higher levels in single MCF-7 over MDA-MB-231 tumor cells. Furthermore, in Capivasertib (Akt-inhibitor)-treated MCF-7 single cells, ZeptoCTC detected a 2-fold increase in the pAkt/Akt ratio compared to control cells, and confirmed co-performed bulk-cell western blot analysis results. Notably, when applied to individual CTCs from metastasized breast cancer patients, ZeptoCTC revealed significant differences in protein activation levels, particularly in measured pAkt and pErk levels, compared to patient-matched WBCs. Moreover, it successfully differentiated between CTCs from patients with different Akt1 genotypes, highlighting its potential to determine the activation status of druggable cancer driving proteins for individual and targeted treatment decision making. CONCLUSIONS The ZeptoCTC workflow represents a valuable tool in single cell cancer research, crucial for personalized medicine. It permits detailed analysis of key proteins and their activation status of targeted, cancer-driven signaling pathways in single cell samples, aiding in understanding tumor response, progression, and treatment efficacy beyond bulk analysis. The method significantly advances clinical investigations in cancer, improving treatment precision and effectiveness. The workflow will be applicable to protein analysis on other types of single cells like relevant in stem cell, neuropathology and hemopoietic cell research.
Collapse
Affiliation(s)
- Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | | | - Meike Beer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany.
| |
Collapse
|
6
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2024:e2400495. [PMID: 39205538 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Theo Matzanke
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| |
Collapse
|
8
|
Stanisheuski S, Ebrahimi A, Vaidya KA, Jang HS, Yang L, Eddins AJ, Marean-Reardon C, Franco MC, Maier CS. Thermal inkjet makes label-free single-cell proteomics accessible and easy. Front Chem 2024; 12:1428547. [PMID: 39233922 PMCID: PMC11371764 DOI: 10.3389/fchem.2024.1428547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.
Collapse
Affiliation(s)
| | - Arpa Ebrahimi
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Kavi Aashish Vaidya
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | | | - Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alex Jordan Eddins
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | |
Collapse
|
9
|
Veličković M, Fillmore TL, Attah IK, Posso C, Pino JC, Zhao R, Williams SM, Veličković D, Jacobs JM, Burnum-Johnson KE, Zhu Y, Piehowski PD. Coupling Microdroplet-Based Sample Preparation, Multiplexed Isobaric Labeling, and Nanoflow Peptide Fractionation for Deep Proteome Profiling of the Tissue Microenvironment. Anal Chem 2024; 96:12973-12982. [PMID: 39089681 PMCID: PMC11325296 DOI: 10.1021/acs.analchem.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity in a cell-type-specific manner to better understand and predict the function of complex biological systems such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverage due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (microdroplet processing in one pot for trace samples), multiplexed isobaric labeling, and a nanoflow peptide fractionation approach. The integrated workflow allowed us to maximize proteome coverage of laser-isolated tissue samples containing nanogram levels of proteins. We demonstrated that the deep spatial proteomics platform can quantify more than 5000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 μm2) and differentiate unique protein abundance patterns in pancreas. Furthermore, the use of the microPOTS chip eliminated the requirement for advanced microfabrication capabilities and specialized nanoliter liquid handling equipment, making it more accessible to proteomic laboratories.
Collapse
Affiliation(s)
- Marija Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Camilo Posso
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James C Pino
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jon M Jacobs
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Dutta T, Vlassakis J. Microscale measurements of protein complexes from single cells. Curr Opin Struct Biol 2024; 87:102860. [PMID: 38848654 DOI: 10.1016/j.sbi.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Proteins execute numerous cell functions in concert with one another in protein-protein interactions (PPI). While essential in each cell, such interactions are not identical from cell to cell. Instead, PPI heterogeneity contributes to cellular phenotypic heterogeneity in health and diseases such as cancer. Understanding cellular phenotypic heterogeneity thus requires measurements of properties of PPIs such as abundance, stoichiometry, and kinetics at the single-cell level. Here, we review recent, exciting progress in single-cell PPI measurements. Novel technology in this area is enabled by microscale and microfluidic approaches that control analyte concentration in timescales needed to outpace PPI disassembly kinetics. We describe microscale innovations, needed technical capabilities, and methods poised to be adapted for single-cell analysis in the near future.
Collapse
Affiliation(s)
- Tanushree Dutta
- Department of Bioengineering, Rice University, Houston, TX 77005, USA. https://twitter.com/duttatanu1717
| | - Julea Vlassakis
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
11
|
Ghosh G, Shannon AE, Searle BC. Data acquisition approaches for single cell proteomics. Proteomics 2024:e2400022. [PMID: 39088833 DOI: 10.1002/pmic.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.
Collapse
Affiliation(s)
- Gautam Ghosh
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ariana E Shannon
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Brian C Searle
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
12
|
Yeo S, Jang J, Jung HJ, Lee H, Lee S, Choe Y. A Zwitterionic Detergent and Catalyst-Based Single-Cell Proteomics Using a Loss-Free Microhole-Collection Disc. Anal Chem 2024; 96:11690-11698. [PMID: 38991018 DOI: 10.1021/acs.analchem.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Recent advances in single-cell proteomics have solved many bottlenecks, such as throughput, sample recovery, and scalability via nanoscale sample handling. In this study, we aimed for a sensitive mass spectrometry (MS) analysis capable of handling single cells with a conventional mass spectrometry workflow without additional equipment. We achieved seamless cell lysis and TMT labeling in a micro-HOLe Disc (microHOLD) by developing a mass-compatible single solution based on a zwitterionic detergent and a catalyst for single-cell lysis and tandem mass tag labeling without a heat incubation step. This method was developed to avoid peptide loss by surface adsorption and buffer or tube changes by collecting tandem mass tag-labeled peptide through microholes placed in the liquid chromatography injection vials in a single solution. We successfully applied the microHOLD single-cell proteomics method for the analysis of proteome reprogramming in hormone-sensitive prostate cells to develop castration-resistant prostate cancer cells. This novel single-cell proteomics method is not limited by cutting-edge nanovolume handling equipment and achieves high throughput and ultrasensitive proteomics analysis of limited samples, such as single cells.
Collapse
Affiliation(s)
- Seungeun Yeo
- Developmental disorders & rare diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaemyung Jang
- Developmental disorders & rare diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental disorders & rare diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngshik Choe
- Developmental disorders & rare diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
13
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2561-0. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
14
|
Kwon Y, Woo J, Yu F, Williams SM, Markillie LM, Moore RJ, Nakayasu ES, Chen J, Campbell-Thompson M, Mathews CE, Nesvizhskii AI, Qian WJ, Zhu Y. Proteome-scale tissue mapping using mass spectrometry based on label-free and multiplexed workflows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583367. [PMID: 38496682 PMCID: PMC10942300 DOI: 10.1101/2024.03.04.583367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jongmin Woo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sarah M. Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ying Zhu
- Department of Proteomic and Genomic Technologies, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
15
|
Ctortecka C, Clark NM, Boyle BW, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat Commun 2024; 15:5707. [PMID: 38977691 PMCID: PMC11231172 DOI: 10.1038/s41467-024-49651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
The recent technological and computational advances in mass spectrometry-based single-cell proteomics have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell remains challenging. To address some of those limitations, we present a dedicated sample preparation chip, the proteoCHIP EVO 96 that directly interfaces with the Evosep One. This, in combination with the Bruker timsTOF demonstrates double the identifications without manual sample handling and the newest generation timsTOF Ultra identifies up to 4000 with an average of 3500 protein groups per single HEK-293T without a carrier or match-between runs. Our workflow spans 4 orders of magnitude, identifies over 50 E3 ubiquitin-protein ligases, and profiles key regulatory proteins upon small molecule stimulation. This study demonstrates that the proteoCHIP EVO 96-based sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
| | | | - Brian W Boyle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
LIU W, WENG L, GAO M, ZHANG X. [Applications of high performance liquid chromatography-mass spectrometry in proteomics]. Se Pu 2024; 42:601-612. [PMID: 38966969 PMCID: PMC11224944 DOI: 10.3724/sp.j.1123.2023.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 07/06/2024] Open
Abstract
Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.
Collapse
|
17
|
Chen L, Zhang Z, Matsumoto C, Gao Y. High-Throughput Proteomics Enabled by a Fully Automated Dual-Trap and Dual-Column LC-MS. Anal Chem 2024; 96:9761-9766. [PMID: 38887087 DOI: 10.1021/acs.analchem.3c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This Technical Note describes a dual-column liquid chromatography system coupled to mass spectrometry (LC-MS) for high-throughput bottom-up proteomic analysis. This system made full use of two 2-position 10-port valves and a binary pump with an integrated loading pump of a commercial LC instrument to provide successive operation of two parallel subsystems. Each subsystem consisted of a set of trap columns and an analytical column. A T-junction union was used to split the mobile phase from the loading pump into two parts. This allowed one set of columns to be washed and equilibrated, followed by the injection of the next sample, while the previous sample was eluting and being analyzed on the other set of columns, thereby greatly increasing the analysis throughput. This approach showed high reproducibility for the analysis of HeLa tryptic digests with average relative standard deviation (RSD) values of 1.75%, 6.90%, and 5.19% for the identification number of proteins, peptides, and peptide-spectrum matches (PSMs), respectively, across 10 consecutive runs. The capacity for peptide and protein identification, as well as proteome depth, of the dual-column LC system was comparable to a conventional single-column system. Due to its simple equipment requirements and set up process, this method should be highly accessible for other laboratories.
Collapse
Affiliation(s)
- Liang Chen
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ziwei Zhang
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cory Matsumoto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
18
|
Pang M, Jones JJ, Wang TY, Quan B, Kubat NJ, Qiu Y, Roukes ML, Chou TF. Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples. J Proteome Res 2024. [PMID: 38832920 DOI: 10.1021/acs.jproteome.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.
Collapse
Affiliation(s)
- Marion Pang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jeff J Jones
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Baiyi Quan
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicole J Kubat
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Yanping Qiu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael L Roukes
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Blvd, Pasadena, California 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Konno R, Ishikawa M, Nakajima D, Endo Y, Ohara O, Kawashima Y. Universal Pretreatment Development for Low-input Proteomics Using Lauryl Maltose Neopentyl Glycol. Mol Cell Proteomics 2024; 23:100745. [PMID: 38447790 PMCID: PMC10999711 DOI: 10.1016/j.mcpro.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.
Collapse
Affiliation(s)
- Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan; Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
21
|
Webber KGI, Huang S, Truong T, Heninger JL, Gregus M, Ivanov AR, Kelly RT. Open-tubular trap columns: towards simple and robust liquid chromatography separations for single-cell proteomics. Mol Omics 2024; 20:184-191. [PMID: 38353725 PMCID: PMC10963139 DOI: 10.1039/d3mo00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.
Collapse
Affiliation(s)
- Kei G I Webber
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Siqi Huang
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Thy Truong
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Jacob L Heninger
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Michal Gregus
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Ryan T Kelly
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| |
Collapse
|
22
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Wang Y, Guan ZY, Shi SW, Jiang YR, Zhang J, Yang Y, Wu Q, Wu J, Chen JB, Ying WX, Xu QQ, Fan QX, Wang HF, Zhou L, Wang L, Fang J, Pan JZ, Fang Q. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell. Nat Commun 2024; 15:1279. [PMID: 38341466 PMCID: PMC10858870 DOI: 10.1038/s41467-024-45659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The shotgun proteomic analysis is currently the most promising single-cell protein sequencing technology, however its identification level of ~1000 proteins per cell is still insufficient for practical applications. Here, we develop a pick-up single-cell proteomic analysis (PiSPA) workflow to achieve a deep identification capable of quantifying up to 3000 protein groups in a mammalian cell using the label-free quantitative method. The PiSPA workflow is specially established for single-cell samples mainly based on a nanoliter-scale microfluidic liquid handling robot, capable of achieving single-cell capture, pretreatment and injection under the pick-up operation strategy. Using this customized workflow with remarkable improvement in protein identification, 2449-3500, 2278-3257 and 1621-2904 protein groups are quantified in single A549 cells (n = 37), HeLa cells (n = 44) and U2OS cells (n = 27) under the DIA (MBR) mode, respectively. Benefiting from the flexible cell picking-up ability, we study HeLa cell migration at the single cell proteome level, demonstrating the potential in practical biological research from single-cell insight.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Ying Guan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Wen Shi
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yi-Rong Jiang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China
| | - Yi Yang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qiong Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Xin Ying
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qin-Qin Xu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Xi Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Li Zhou
- Shanghai Omicsolution Co., Shanghai, 201100, China
| | - Ling Wang
- Shanghai Omicsolution Co., Shanghai, 201100, China
| | - Jin Fang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China.
| |
Collapse
|
24
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
25
|
Ctortecka C, Clark NM, Boyle B, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576369. [PMID: 38328197 PMCID: PMC10849471 DOI: 10.1101/2024.01.20.576369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) has gained massive attention as a viable complement to other single cell approaches. The rapid technological and computational advances in the field have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell at reasonable proteome depth to characterize biological phenomena remains a challenge. To address some of those limitations we present a combination of fully automated single cell sample preparation utilizing a dedicated chip within the picolitre dispensing robot, the cellenONE. The proteoCHIP EVO 96 can be directly interfaced with the Evosep One chromatographic system for in-line desalting and highly reproducible separation with a throughput of 80 samples per day. This, in combination with the Bruker timsTOF MS instruments, demonstrates double the identifications without manual sample handling. Moreover, relative to standard high-performance liquid chromatography, the Evosep One separation provides further 2-fold improvement in protein identifications. The implementation of the newest generation timsTOF Ultra with our proteoCHIP EVO 96-based sample preparation workflow reproducibly identifies up to 4,000 proteins per single HEK-293T without a carrier or match-between runs. Our current SCP depth spans over 4 orders of magnitude and identifies over 50 biologically relevant ubiquitin ligases. We complement our highly reproducible single-cell proteomics workflow to profile hundreds of lipopolysaccharide (LPS)-perturbed THP-1 cells and identified key regulatory proteins involved in interleukin and interferon signaling. This study demonstrates that the proteoCHIP EVO 96-based SCP sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Natalie M. Clark
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Brian Boyle
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Anjali Seth
- Cellenion SASU, 60F avenue Rockefeller, 69008 Lyon, France
| | - D. R. Mani
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Namrata D. Udeshi
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| |
Collapse
|
26
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
27
|
Orsburn BC. Analyzing Posttranslational Modifications in Single Cells. Methods Mol Biol 2024; 2817:145-156. [PMID: 38907153 DOI: 10.1007/978-1-0716-3934-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
With the rapid expansion of capabilities in the analysis of proteins in single cells, we can now identify multiple classes of protein posttranslational modifications on some of these proteins. Each new technology that has increased the number of proteins measured per cell has likewise increased our ability to identify and quantify modified peptides. In this chapter, I will discuss our current capabilities, concerns, and challenges specific to this emerging field of study and the inevitable demand for services, providing a general review of concepts that should be considered.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- The Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
29
|
Zhang D, Qiao L. Microfluidics Coupled Mass Spectrometry for Single Cell Multi-Omics. SMALL METHODS 2024; 8:e2301179. [PMID: 37840412 DOI: 10.1002/smtd.202301179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Population-level analysis masks significant heterogeneity between individual cells, making it difficult to accurately reflect the true intricacies of life activities. Microfluidics is a technique that can manipulate individual cells effectively and is commonly coupled with a variety of analytical methods for single-cell analysis. Single-cell omics provides abundant molecular information at the single-cell level, fundamentally revealing differences in cell types and biological states among cell individuals, leading to a deeper understanding of cellular phenotypes and life activities. Herein, this work summarizes the microfluidic chips designed for single-cell isolation, manipulation, trapping, screening, and sorting, including droplet microfluidic chips, microwell arrays, hydrodynamic microfluidic chips, and microchips with microvalves. This work further reviews the studies on single-cell proteomics, metabolomics, lipidomics, and multi-omics based on microfluidics and mass spectrometry. Finally, the challenges and future application of single-cell multi-omics are discussed.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| |
Collapse
|
30
|
Xiang P, Liyu A, Kwon Y, Hu D, Williams SM, Veličković D, Markillie LM, Chrisler WB, Paša-Tolić L, Zhu Y. Spatial Proteomics toward Subcellular Resolution by Coupling Deep Ultraviolet Laser Ablation with Nanodroplet Sample Preparation. ACS MEASUREMENT SCIENCE AU 2023; 3:459-468. [PMID: 38145026 PMCID: PMC10740121 DOI: 10.1021/acsmeasuresciau.3c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 μm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 μm from a 10 μm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 μm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.
Collapse
Affiliation(s)
- Piliang Xiang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Andrey Liyu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yumi Kwon
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Sarah M. Williams
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Lye Meng Markillie
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Department
of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
31
|
Zeng Q, Xia MC, Yin X, Cheng S, Xue Z, Tan S, Gong X, Ye Z. Recent developments in ionization techniques for single-cell mass spectrometry. Front Chem 2023; 11:1293533. [PMID: 38130875 PMCID: PMC10733462 DOI: 10.3389/fchem.2023.1293533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The variation among individual cells plays a significant role in many biological functions. Single-cell analysis is advantageous for gaining insight into intricate biochemical mechanisms rarely accessible when studying tissues as a whole. However, measurement on a unicellular scale is still challenging due to unicellular complex composition, minute substance quantities, and considerable differences in compound concentrations. Mass spectrometry has recently gained extensive attention in unicellular analytical fields due to its exceptional sensitivity, throughput, and compound identification abilities. At present, single-cell mass spectrometry primarily concentrates on the enhancement of ionization methods. The principal ionization approaches encompass nanoelectrospray ionization (nano-ESI), laser desorption ionization (LDI), secondary ion mass spectrometry (SIMS), and inductively coupled plasma (ICP). This article summarizes the most recent advancements in ionization techniques and explores their potential directions within the field of single-cell mass spectrometry.
Collapse
Affiliation(s)
- Qingli Zeng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Meng-Chan Xia
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Simin Cheng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
32
|
Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G, Udeshi ND, Carr SA, Mechtler K. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity. Mol Cell Proteomics 2023; 22:100665. [PMID: 37839701 PMCID: PMC10684380 DOI: 10.1016/j.mcpro.2023.100665] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Multiplexed and label-free mass spectrometry-based approaches with single-cell resolution have attributed surprising heterogeneity to presumed homogenous cell populations. Even though specialized experimental designs and instrumentation have demonstrated remarkable advances, the efficient sample preparation of single cells still lags. Here, we introduce the proteoCHIP, a universal option for single-cell proteomics sample preparation including multiplexed labeling up to 16-plex with high sensitivity and throughput. The automated processing using a commercial system combining single-cell isolation and picoliter dispensing, the cellenONE, reduces final sample volumes to low nanoliters submerged in a hexadecane layer simultaneously eliminating error-prone manual sample handling and overcoming evaporation. The specialized proteoCHIP design allows direct injection of single cells via a standard autosampler resulting in around 1500 protein groups per TMT10-plex with reduced or eliminated need for a carrier proteome. We evaluated the effect of wider precursor isolation windows at single-cell input levels and found that using 2 Da isolation windows increased overall sensitivity without significantly impacting interference. Using the dedicated mass spectrometry acquisition strategies detailed here, we identified on average close to 2000 proteins per TMT10-plex across 170 multiplexed single cells that readily distinguished human cell types. Overall, our workflow combines highly efficient sample preparation, chromatographic and ion mobility-based filtering, rapid wide-window data-dependent acquisition analysis, and intelligent data analysis for optimal multiplexed single-cell proteomics. This versatile and automated proteoCHIP-based sample preparation approach is sufficiently sensitive to drive biological applications of single-cell proteomics and can be readily adopted by proteomics laboratories.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - David Hartlmayr
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France
| | | | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | | | - Namrata D Udeshi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria; The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
33
|
Lu H, Zhang H, Li L. Chemical tagging mass spectrometry: an approach for single-cell omics. Anal Bioanal Chem 2023; 415:6901-6913. [PMID: 37466681 PMCID: PMC10729908 DOI: 10.1007/s00216-023-04850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Single-cell (SC) analysis offers new insights into the study of fundamental biological phenomena and cellular heterogeneity. The superior sensitivity, high throughput, and rich chemical information provided by mass spectrometry (MS) allow MS to emerge as a leading technology for molecular profiling of SC omics, including the SC metabolome, lipidome, and proteome. However, issues such as ionization suppression, low concentration, and huge span of dynamic concentrations of SC components lead to poor MS response for certain types of molecules. It is noted that chemical tagging/derivatization has been adopted in SCMS analysis, and this strategy has been proven an effective solution to circumvent these issues in SCMS analysis. Herein, we review the basic principle and general strategies of chemical tagging/derivatization in SCMS analysis, along with recent applications of chemical derivatization to single-cell metabolomics and multiplexed proteomics, as well as SCMS imaging. Furthermore, the challenges and opportunities for the improvement of chemical derivatization strategies in SCMS analysis are discussed.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
34
|
Reitz CJ, Kuzmanov U, Gramolini AO. Multi-omic analyses and network biology in cardiovascular disease. Proteomics 2023; 23:e2200289. [PMID: 37691071 DOI: 10.1002/pmic.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Heart disease remains a leading cause of death in North America and worldwide. Despite advances in therapies, the chronic nature of cardiovascular diseases ultimately results in frequent hospitalizations and steady rates of mortality. Systems biology approaches have provided a new frontier toward unraveling the underlying mechanisms of cell, tissue, and organ dysfunction in disease. Mapping the complex networks of molecular functions across the genome, transcriptome, proteome, and metabolome has enormous potential to advance our understanding of cardiovascular disease, discover new disease biomarkers, and develop novel therapies. Computational workflows to interpret these data-intensive analyses as well as integration between different levels of interrogation remain important challenges in the advancement and application of systems biology-based analyses in cardiovascular research. This review will focus on summarizing the recent developments in network biology-level profiling in the heart, with particular emphasis on modeling of human heart failure. We will provide new perspectives on integration between different levels of large "omics" datasets, including integration of gene regulatory networks, protein-protein interactions, signaling networks, and metabolic networks in the heart.
Collapse
Affiliation(s)
- Cristine J Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Li J, Huang L, Guo Y, Cupp-Sutton KA, Wu S. An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples. Anal Bioanal Chem 2023; 415:6961-6973. [PMID: 37581707 PMCID: PMC10843549 DOI: 10.1007/s00216-023-04870-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, "spray-capillary," for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| |
Collapse
|
36
|
Chen Y, Du Z, Zhao H, Fang W, Liu T, Zhang Y, Zhang W, Qin W. SPPUSM: An MS/MS spectra merging strategy for improved low-input and single-cell proteome identification. Anal Chim Acta 2023; 1279:341793. [PMID: 37827637 DOI: 10.1016/j.aca.2023.341793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Single and rare cell analysis provides unique insights into the investigation of biological processes and disease progress by resolving the cellular heterogeneity that is masked by bulk measurements. Although many efforts have been made, the techniques used to measure the proteome in trace amounts of samples or in single cells still lag behind those for DNA and RNA due to the inherent non-amplifiable nature of proteins and the sensitivity limitation of current mass spectrometry. Here, we report an MS/MS spectra merging strategy termed SPPUSM (same precursor-produced unidentified spectra merging) for improved low-input and single-cell proteome data analysis. In this method, all the unidentified MS/MS spectra from multiple test files are first extracted. Then, the corresponding MS/MS spectra produced by the same precursor ion from different files are matched according to their precursor mass and retention time (RT) and are merged into one new spectrum. The newly merged spectra with more fragment ions are next searched against the database to increase the MS/MS spectra identification and proteome coverage. Further improvement can be achieved by increasing the number of test files and spectra to be merged. Up to 18.2% improvement in protein identification was achieved for 1 ng HeLa peptides by SPPUSM. Reliability evaluation by the "entrapment database" strategy using merged spectra from human and E. coli revealed a marginal error rate for the proposed method. For application in single cell proteome (SCP) study, identification enhancement of 28%-61% was achieved for proteins for different SCP data. Furthermore, a lower abundance was found for the SPPUSM-identified peptides, indicating its potential for more sensitive low sample input and SCP studies.
Collapse
Affiliation(s)
- Yongle Chen
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Zhuokun Du
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Hongxian Zhao
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Wei Fang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Tong Liu
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing, 102206, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
37
|
Schirmer M, Dusny C. Microbial single-cell mass spectrometry: status, challenges, and prospects. Curr Opin Biotechnol 2023; 83:102977. [PMID: 37515936 DOI: 10.1016/j.copbio.2023.102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Single-cell analysis uncovers phenotypic differences between cells in a population and dissects their individual physiological states and differences on all omics levels from genome to phenome. Spectrometric observation allows label-free analysis of the metabolome and proteome of individual cells, but is still mainly limited to the analysis of mammalian single cells. Recent progress in mass spectrometry approaches now enables the analysis of microbial single cells - mainly by miniaturizing cell handling, incubation, and improving chip-coupling concepts for analyte ionization by interfacing microfluidic chips and mass spectrometers. This review aims at distilling the enabling principles behind microbial single-cell mass spectrometry and puts them into perspective for the future of the field.
Collapse
Affiliation(s)
- Martin Schirmer
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany
| | - Christian Dusny
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany.
| |
Collapse
|
38
|
Johnston SM, Webber KGI, Xie X, Truong T, Nydegger A, Lin HJL, Nwosu A, Zhu Y, Kelly RT. Rapid, One-Step Sample Processing for Label-Free Single-Cell Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1701-1707. [PMID: 37410391 PMCID: PMC11017373 DOI: 10.1021/jasms.3c00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Sample preparation for single-cell proteomics is generally performed in a one-pot workflow with multiple dispensing and incubation steps. These hours-long processes can be labor intensive and lead to long sample-to-answer times. Here we report a sample preparation method that achieves cell lysis, protein denaturation, and digestion in 1 h using commercially available high-temperature-stabilized proteases with a single reagent dispensing step. Four different one-step reagent compositions were evaluated, and the mixture providing the highest proteome coverage was compared to the previously employed multistep workflow. The one-step preparation increases proteome coverage relative to the previous multistep workflow while minimizing labor input and the possibility of human error. We also compared sample recovery between previously used microfabricated glass nanowell chips and injection-molded polypropylene chips and found the polypropylene provided improved proteome coverage. Combined, the one-step sample preparation and the polypropylene substrates enabled the identification of an average of nearly 2400 proteins per cell using a standard data-dependent workflow with Orbitrap mass spectrometers. These advances greatly simplify sample preparation for single-cell proteomics and broaden accessibility with no compromise in terms of proteome coverage.
Collapse
Affiliation(s)
- S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Alissia Nydegger
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andikan Nwosu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
39
|
Yang KL, Yu F, Teo GC, Li K, Demichev V, Ralser M, Nesvizhskii AI. MSBooster: improving peptide identification rates using deep learning-based features. Nat Commun 2023; 14:4539. [PMID: 37500632 PMCID: PMC10374903 DOI: 10.1038/s41467-023-40129-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide identification in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments relies on computational algorithms for matching acquired MS/MS spectra against sequences of candidate peptides using database search tools, such as MSFragger. Here, we present a new tool, MSBooster, for rescoring peptide-to-spectrum matches using additional features incorporating deep learning-based predictions of peptide properties, such as LC retention time, ion mobility, and MS/MS spectra. We demonstrate the utility of MSBooster, in tandem with MSFragger and Percolator, in several different workflows, including nonspecific searches (immunopeptidomics), direct identification of peptides from data independent acquisition data, single-cell proteomics, and data generated on an ion mobility separation-enabled timsTOF MS platform. MSBooster is fast, robust, and fully integrated into the widely used FragPipe computational platform.
Collapse
Affiliation(s)
- Kevin L Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Liang Y, Truong T, Saxton AJ, Boekweg H, Payne SH, Van Ry PM, Kelly RT. HyperSCP: Combining Isotopic and Isobaric Labeling for Higher Throughput Single-Cell Proteomics. Anal Chem 2023; 95:8020-8027. [PMID: 37167627 PMCID: PMC10246935 DOI: 10.1021/acs.analchem.3c00906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent developments in mass spectrometry-based single-cell proteomics (SCP) have resulted in dramatically improved sensitivity, yet the relatively low measurement throughput remains a limitation. Isobaric and isotopic labeling methods have been separately applied to SCP to increase throughput through multiplexing. Here we combined both forms of labeling to achieve multiplicative scaling for higher throughput. Two-plex stable isotope labeling of amino acids in cell culture (SILAC) and isobaric tandem mass tag (TMT) labeling enabled up to 28 single cells to be analyzed in a single liquid chromatography-mass spectrometry (LC-MS) analysis, in addition to carrier, reference, and negative control channels. A custom nested nanowell chip was used for nanoliter sample processing to minimize sample losses. Using a 145-min total LC-MS cycle time, ∼280 single cells were analyzed per day. This measurement throughput could be increased to ∼700 samples per day with a high-duty-cycle multicolumn LC system producing the same active gradient. The labeling efficiency and achievable proteome coverage were characterized for multiple analysis conditions.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Aubrianna J Saxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hannah Boekweg
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
42
|
Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359774 PMCID: PMC10173243 DOI: 10.1038/s44222-023-00063-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 06/20/2023]
Abstract
Biomedical research is undergoing a paradigm shift towards approaches centred on human disease models owing to the notoriously high failure rates of the current drug development process. Major drivers for this transition are the limitations of animal models, which, despite remaining the gold standard in basic and preclinical research, suffer from interspecies differences and poor prediction of human physiological and pathological conditions. To bridge this translational gap, bioengineered human disease models with high clinical mimicry are being developed. In this Review, we discuss preclinical and clinical studies that benefited from these models, focusing on organoids, bioengineered tissue models and organs-on-chips. Furthermore, we provide a high-level design framework to facilitate clinical translation and accelerate drug development using bioengineered human disease models.
Collapse
Affiliation(s)
- Anna Loewa
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
- Max-Delbrück Center for Molecular Medicine (MCD), Helmholtz Association, Berlin, Germany
| |
Collapse
|
43
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
44
|
Liu S, Kumari S, He H, Mishra P, Singh BN, Singh D, Liu S, Srivastava P, Li C. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization. Biosens Bioelectron 2023; 231:115285. [PMID: 37058958 DOI: 10.1016/j.bios.2023.115285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
As a full-fidelity simulation of human cells, tissues, organs, and even systems at the microscopic scale, Organ-on-a-Chip (OOC) has significant ethical advantages and development potential compared to animal experiments. The need for the design of new drug high-throughput screening platforms and the mechanistic study of human tissues/organs under pathological conditions, the evolving advances in 3D cell biology and engineering, etc., have promoted the updating of technologies in this field, such as the iteration of chip materials and 3D printing, which in turn facilitate the connection of complex multi-organs-on-chips for simulation and the further development of technology-composite new drug high-throughput screening platforms. As the most critical part of organ-on-a-chip design and practical application, verifying the success of organ model modeling, i.e., evaluating various biochemical and physical parameters in OOC devices, is crucial. Therefore, this paper provides a logical and comprehensive review and discussion of the advances in organ-on-a-chip detection and evaluation technologies from a broad perspective, covering the directions of tissue engineering scaffolds, microenvironment, single/multi-organ function, and stimulus-based evaluation, and provides a more comprehensive review of the progress in the significant organ-on-a-chip research areas in the physiological state.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Hongyi He
- West China School of Medicine & West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Parichita Mishra
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Pradeep Srivastava
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
45
|
Gebreyesus ST, Muneer G, Huang CC, Siyal AA, Anand M, Chen YJ, Tu HL. Recent advances in microfluidics for single-cell functional proteomics. LAB ON A CHIP 2023; 23:1726-1751. [PMID: 36811978 DOI: 10.1039/d2lc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed via other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis. Notably, they have been serving as an enabling technology to improve the sensitivity, robustness, and reproducibility of recently developed SCP methods. Critical roles of microfluidics technologies are expected to further expand rapidly in advancing the next phase of SCP analysis to reveal more biological and clinical insights. In this review, we will capture the excitement of the recent achievements of microfluidics methods for both targeted and global SCP, including efforts to enhance the proteomic coverage, minimize sample loss, and increase multiplexity and throughput. Furthermore, we will discuss the advantages, challenges, applications, and future prospects of SCP.
Collapse
Affiliation(s)
- Sofani Tafesse Gebreyesus
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Asad Ali Siyal
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Mihir Anand
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
46
|
Veličković M, Fillmore TL, Attah K, Posso C, Pino JC, Zhao R, Williams SM, Veličković D, Jacobs JM, Burnum-Johnson KE, Zhu Y, Piehowski PD. Coupling microdroplet-based sample preparation, multiplexed isobaric labeling, and nanoflow peptide fractionation for deep proteome profiling of tissue microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531822. [PMID: 36993277 PMCID: PMC10055005 DOI: 10.1101/2023.03.13.531822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.
Collapse
|
47
|
Yu H, Yang C, Tai Q, Gao M, Zhang X. New Method for Counting and Picking Out Single Circulating Tumor Cells from Microliter-Volume Samples for Tumor Progression Surveillance and Single-Cell Heterogeneity Analysis. Anal Chem 2023; 95:5232-5239. [PMID: 36913664 DOI: 10.1021/acs.analchem.2c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Circulating tumor cells (CTCs) are crucial in tumor progression and metastasis, but the knowledge of their roles grows slowly at single-cell levels. Characterizing the rarity and fragility of CTCs by nature, highly stable and efficient single-CTC sampling methods are still lacking, which impedes the development of single-CTC analysis. Herein, an improved, capillary-based single-cell sampling (SiCS) method, the so-called bubble-glue single-cell sampling (bubble-glue SiCS), is introduced. Benefiting from the characteristic that the cells tend to adhere to air bubbles in the solution, single cells can be sampled with bubbles as low as 20 pL with a self-designed microbubble-volume-controlled system. Benefiting from the excellent maneuverability, single CTCs are sampled directly from 10 μL volume of real blood samples after fluorescent labeling. Meanwhile, over 90% of the CTCs obtained survived and well proliferated after the bubble-glue SiCS process, which showed considerable superiority for downstream single-CTC profiling. Furthermore, a highly metastatic breast cancer model of the 4T1 cell line in vivo was employed for the real blood sample analysis. Increases in CTC numbers were observed during the tumor progression process, and significant heterogeneities among individual CTCs were discovered. In all, we propose a novel avenue for target SiCS and provide an alternative technique route for CTC separation and analysis.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chenjie Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
48
|
Matzinger M, Müller E, Dürnberger G, Pichler P, Mechtler K. Robust and Easy-to-Use One-Pot Workflow for Label-Free Single-Cell Proteomics. Anal Chem 2023; 95:4435-4445. [PMID: 36802514 PMCID: PMC9996606 DOI: 10.1021/acs.analchem.2c05022] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
The analysis of ultralow input samples or even individual cells is essential to answering a multitude of biomedical questions, but current proteomic workflows are limited in their sensitivity and reproducibility. Here, we report a comprehensive workflow that includes improved strategies for all steps, from cell lysis to data analysis. Thanks to convenient-to-handle 1 μL sample volume and standardized 384-well plates, the workflow is easy for even novice users to implement. At the same time, it can be performed semi-automatized using CellenONE, which allows for the highest reproducibility. To achieve high throughput, ultrashort gradient lengths down to 5 min were tested using advanced μ-pillar columns. Data-dependent acquisition (DDA), wide-window acquisition (WWA), data-independent acquisition (DIA), and commonly used advanced data analysis algorithms were benchmarked. Using DDA, 1790 proteins covering a dynamic range of four orders of magnitude were identified in a single cell. Using DIA, proteome coverage increased to more than 2200 proteins identified from single-cell level input in a 20 min active gradient. The workflow enabled differentiation of two cell lines, demonstrating its suitability to cellular heterogeneity determination.
Collapse
Affiliation(s)
- Manuel Matzinger
- Institute
of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Elisabeth Müller
- Institute
of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Gerhard Dürnberger
- Gregor
Mendel Institute of Molecular Plant Biology (GMI) of the Austrian
Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Peter Pichler
- Institute
of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Karl Mechtler
- Institute
of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
- Institute
of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Gregor
Mendel Institute of Molecular Plant Biology (GMI) of the Austrian
Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| |
Collapse
|
49
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
50
|
Liao YC, Fulcher JM, Degnan DJ, Williams SM, Bramer LM, Veličković D, Zemaitis KJ, Veličković M, Sontag RL, Moore RJ, Paša-Tolić L, Zhu Y, Zhou M. Spatially Resolved Top-Down Proteomics of Tissue Sections Based on a Microfluidic Nanodroplet Sample Preparation Platform. Mol Cell Proteomics 2023; 22:100491. [PMID: 36603806 PMCID: PMC9944986 DOI: 10.1016/j.mcpro.2022.100491] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.e., functional) forms of proteins capturing genetic variations, alternatively spliced transcripts and posttranslational modifications. Herein, we described a spatially resolved top-down proteomics (TDP) platform for proteoform identification and quantitation directly from tissue sections. The spatial TDP platform consisted of a nanodroplet processing in one pot for trace samples-based sample preparation system and an laser capture microdissection-based cell isolation system. We improved the nanodroplet processing in one pot for trace samples sample preparation by adding benzonase in the extraction buffer to enhance the coverage of nucleus proteins. Using ∼200 cultured cells as test samples, this approach increased total proteoform identifications from 493 to 700; with newly identified proteoforms primarily corresponding to nuclear proteins. To demonstrate the spatial TDP platform in tissue samples, we analyzed laser capture microdissection-isolated tissue voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms within the union of top-down mass spectrometry-based proteoform identification and characterization and TDPortal identifications to match with features from protein mass extractor. Several proteoforms corresponding to the same gene exhibited mixed abundance profiles between two tissue regions, suggesting potential posttranslational modification-specific spatial distributions. The spatial TDP workflow has prospects for biomarker discovery at proteoform level from small tissue sections.
Collapse
Affiliation(s)
- Yen-Chen Liao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marija Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|