1
|
Torkamannejad S, Chang G, Aroge FA, Sun B. Single Isotopologue for In-Sample Calibration and Absolute Quantitation by LC-MS/MS. J Proteome Res 2024; 23:1351-1359. [PMID: 38445850 DOI: 10.1021/acs.jproteome.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Targeted mass spectrometry (MS)-based absolute quantitative analysis has been increasingly used in biomarker discovery. The ability to accurately measure the masses by MS enabled the use of isotope-incorporated surrogates having virtually identical physiochemical properties with the target analytes as calibrators. Such a unique capacity allowed for accurate in-sample calibration. Current in-sample calibration uses multiple isotopologues or structural analogues for both the surrogate and the internal standard. Here, we simplified this common practice by using endogenous light peptides as the internal standards and used a mathematical deduction of "heavy matching light, HML" to directly quantify an endogenous analyte. This method provides all necessary assay performance parameters in the authentic matrix, including the lower limit of quantitation (LLOQ) and intercept of the calibration curve, by using only a single isotopologue of the analyte. This method can be applied to the quantitation of proteins, peptides, and small molecules. Using this method, we quantified the efficiency of heart tissue digestion and recovery using sodium deoxycholate as a detergent and two spiked exogenous proteins as mimics of heart proteins. The results demonstrated the robustness of the assay.
Collapse
Affiliation(s)
- Soroush Torkamannejad
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Ge Chang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A Aroge
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
2
|
Zhang H, Li Y, Abdallah MF, Tan H, Li J, Liu S, Zhang R, Sun F, Li Y, Yang S. Novel one-point calibration strategy for high-throughput quantitation of microcystins in freshwater using LC-MS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159345. [PMID: 36270352 DOI: 10.1016/j.scitotenv.2022.159345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Precise quantification of microcystins (MCs) in freshwater is crucial for environmental monitoring and human health. However, the preparation of traditional multi-sample external calibration curve (MSCC) is time consuming and prone to error. Here, a novel one-point calibration strategy including one sample multi-point calibration curve (OSCC) and in sample calibration curve (ISCC) is proposed for the quantitation of eight MCs in freshwater lakes using liquid chromatography tandem mass spectrometry (LC-MS/MS). The multiple isotopologue reaction monitoring (MIRM) of MCs and its 15N-labelled internal standards were used for OSCC and ISCC, respectively. The isotopic abundance of each MIRM channel could be calculated and measured accurately. Additionally, this strategy was comprehensively validated and showed good performance in selectivity, sensitivity, accuracy and precision as the traditional MSCC. Interestingly, OSCC could realize sample dilution by monitoring the less abundant MIRM transitions, while ISCC remove blank matrixes and generate calibration curve in each study samples. Furthermore, the proposed methodology was successfully applied to analyze several freshwater lake samples contaminated by MCs. Considering the advantages of excluding the MSCC preparation, simplified workflows and improved throughput, OSCC and ISCC will be favored for MCs monitoring and as an emerging approach in environmental pollutant control and prevention.
Collapse
Affiliation(s)
- Huiyan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Feifei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
3
|
MacNeill R, Thomas S, Anand P, Koleto M, Powers B, Ledvina A. The Origin-Adjusted Approach for Reliable Quantification of Endogenous Analytes in Mass Spectrometric Bioanalysis. ACS OMEGA 2022; 7:47372-47377. [PMID: 36570202 PMCID: PMC9774370 DOI: 10.1021/acsomega.2c06850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The reliably accurate and precise quantification of biomarkers is a priceless objective in the drug development and diagnostic arenas. To employ a technique that brings such reliability and furthermore involves a simpler, faster, and inexpensive regime would only underline the potential importance of the concept and technique. To the existing established approaches for biomarker quantification in bioanalytical LC-MS, surrogate matrix (SUR-M) and surrogate analyte (SUR-A), in this Letter we present an approach that fulfills the aforementioned advantages. The concept builds on the historic method of standard addition (SA), in which one source of biological matrix is spiked with analyte to form a calibration curve. With the SA curve back-calculated, the heart of this procedure is the subsequent adjustment of the intercept to zero, the origin, and using only the slope of the curve for interpolation giving calculated sample concentrations. In SA, the concentration axis intercept indicates the endogenous analyte concentration, and our zeroing of this is equivalent to removing the endogenous level. This key shift of the calculated line to the origin unveils our novel origin-adjusted (OA) approach. It enables use akin to a regular xenobiotic method, with no need to ultimately account for the endogenous analyte level in the control matrix used for calibrants. We present a comparison of OA against the control approach of SUR-M in a representative application for kynurenine and tryptophan in human plasma by LC-MS. A numerical performance analysis performed is demonstrative of equivalence between the two approaches for both analytes.
Collapse
|
4
|
Sobsey CA, Froehlich B, Batist G, Borchers CH. Immuno-MALDI-MS for Accurate Quantitation of Targeted Peptides from Volume-Restricted Samples. Methods Mol Biol 2022; 2515:203-225. [PMID: 35776354 DOI: 10.1007/978-1-0716-2409-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The immuno-MALDI-MS method can be used to quantify low-abundance proteins from clinical samples that offer only a limited amount of material for analysis. An internal standard, in the form of a stable isotope-labeled peptide, is used to ensure reproducible and absolute quantitation. The protocol described here was optimized for the quantitation of AKT1 and AKT2, but we offer instructions on how to adapt the method to target other proteins. The described workflow is compatible with automation via a liquid handling robot for high-throughput applications.
Collapse
Affiliation(s)
- Constance A Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bjoern Froehlich
- University of Victoria - Genome BC Proteomics Centre, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Gerald Batist
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Exactis Innovation, Montreal, QC, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Froehlich BC, Popp R, Sobsey CA, Ibrahim S, LeBlanc A, Mohammed Y, Buchanan M, Aguilar-Mahecha A, Pötz O, Chen MX, Spatz A, Basik M, Batist G, Zahedi RP, Borchers CH. A multiplexed, automated immuno-matrix assisted laser desorption/ionization mass spectrometry assay for simultaneous and precise quantitation of PTEN and p110α in cell lines and tumor tissues. Analyst 2021; 146:6566-6575. [PMID: 34585690 DOI: 10.1039/d1an00165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PI3-kinase/AKT/mTOR pathway plays a central role in cancer signaling. While p110α is the catalytic α-subunit of PI3-kinase and a major drug target, PTEN is the main negative regulator of the PI3-kinase/AKT/mTOR pathway. PTEN is often down-regulated in cancer, and there are conflicting data on PTEN's role as breast cancer biomarker. PTEN and p110α protein expression in tumors is commonly analyzed by immunohistochemistry, which suffers from poor multiplexing capacity, poor standardization, and antibody crossreactivity, and which provides only semi-quantitative data. Here, we present an automated, and standardized immuno-matrix-assisted laser desorption/ionization mass spectrometry (iMALDI) assay that allows precise and multiplexed quantitation of PTEN and p110α concentrations, without the limitations of immunohistochemistry. Our iMALDI assay only requires a low-cost benchtop MALDI-TOF mass spectrometer, which simplifies clinical translation. We validated our assay's precision and accuracy, with simultaneous enrichment of both target proteins not significantly affecting the precision and accuracy of the quantitation when compared to the PTEN- and p110α-singleplex iMALDI assays (<15% difference). The multiplexed assay's linear range is from 0.6-20 fmol with accuracies of 90-112% for both target proteins, and the assay is free of matrix-related interferences. The inter-day reproducibility over 5-days was high, with an overall CV of 9%. PTEN and p110α protein concentrations can be quantified down to 1.4 fmol and 0.6 fmol per 10 μg of total tumor protein, respectively, in various tumor tissue samples, including fresh-frozen breast tumors and colorectal cancer liver metastases, and patient-derived xenograft (PDX) tumors.
Collapse
Affiliation(s)
- Bjoern C Froehlich
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Robert Popp
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Constance A Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Andre LeBlanc
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Yassene Mohammed
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Marguerite Buchanan
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany.,SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Michael X Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Alan Spatz
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Mark Basik
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada
| | - Gerald Batist
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H4A3T2, Canada.
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H4A3T2, Canada.
| |
Collapse
|
6
|
Ibrahim S, Lan C, Chabot C, Mitsa G, Buchanan M, Aguilar-Mahecha A, Elchebly M, Poetz O, Spatz A, Basik M, Batist G, Zahedi RP, Borchers CH. Precise Quantitation of PTEN by Immuno-MRM: A Tool To Resolve the Breast Cancer Biomarker Controversy. Anal Chem 2021; 93:10816-10824. [PMID: 34324311 DOI: 10.1021/acs.analchem.1c00975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor suppressor PTEN is the main negative regulator of PI3K/AKT/mTOR signaling and is commonly found downregulated in breast cancer (BC). Conflicting data from conventional immunoassays such as immunohistochemistry (IHC) has sparked controversy about PTEN's role as a prognostic and predictive biomarker in BC, which can be largely attributed to the lack of specificity, sensitivity, and interlaboratory standardization. Here, we present a fully standardized, highly sensitive, robust microflow immuno-MRM (iMRM) assay that enables precise quantitation of PTEN concentrations in cells and fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissues, down to 0.1 fmol/10 μg of extracted protein, with high interday and intraday precision (CV 6.3%). PTEN protein levels in BC PDX samples that were determined by iMRM correlate well with semiquantitative IHC and WB data. iMRM, however, allowed the precise quantitation of PTEN-even in samples that were deemed to be PTEN negative by IHC or western blot (WB)-while requiring substantially less tumor tissue than WB. This is particularly relevant because the extent of PTEN downregulation in tumors has been shown to correlate with severity. Our standardized and robust workflow includes an 11 min microflow LC-MRM analysis on a triple-quadrupole MS and thus provides a much needed tool for the study of PTEN as a potential biomarker for BC.
Collapse
Affiliation(s)
- Sahar Ibrahim
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Clinical Pathology Department, Menoufia University, Shebeen, El Kom 32511, Egypt.,Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Cathy Lan
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Catherine Chabot
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Georgia Mitsa
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | | | | | - Mounib Elchebly
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Oliver Poetz
- University of Tuebingen, Reutlingen 72770, Germany.,SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Alan Spatz
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Department of Pathology, McGill University, Montréal, Quebec H3A 2B4, Canada.,OPTILAB-McGill University Health Centre, Montréal, Quebec H4A 3J1, Canada
| | - Mark Basik
- Division of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1 Canada.,Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, McGill University, Montréal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
7
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Gaspar VP, Ibrahim S, Sobsey CA, Richard VR, Spatz A, Zahedi RP, Borchers CH. Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacol Transl Sci 2020; 3:1304-1309. [PMID: 33344903 DOI: 10.1021/acsptsci.0c00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Bevacizumab is a monoclonal antibody which targets vascular endothelial growth factor A (VEGF-A) and is used to treat various cancers and recently COVID-19. The dosage recommendations for bevacizumab are determined on the basis of body weight, and the drug is administered after defined time intervals, when it is presumed to still be above its minimum effective serum concentration. Interindividual and disease-stage-related variations in bevacizumab catabolism, however, can affect the proper dosing of patients, resulting in plasma concentrations which may not be within the optimal therapeutic window for the drug. Therapeutic drug monitoring (TDM) enables the assessment of patients' serum concentrations and allows personalized dosing which has the potential to improve efficacy and reduce side effects. While TMD is often performed using ligand-based assays, mass spectrometry (MS)-based TDM offers improved specificity. Here, we present a robust multiple reaction monitoring (MRM)-MS-based TDM method for the precise quantification of bevacizumab plasma concentrations, based on the controlled oxidation of the methionine-containing peptide, STAYLQMNSLR. The assay shows good linearity (r 2 = 0.9951), robustness, and precision (CVs < 20%) for the quantification of bevacizumab, with a lower limit of quantification (S/N > 10) of 1.8 μg/mL of plasma, without the need for enrichment and requiring less than 1 μL of plasma and less than 6 h from sampling to result.
Collapse
Affiliation(s)
- Vanessa P Gaspar
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Sahar Ibrahim
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Constance A Sobsey
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Alan Spatz
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|