1
|
Huang W, Pereira D, Sun J, Zeisberger M, Schmidt MA. Fiber-interfaced hollow-core light cage: a platform for on-fiber-integrated waveguides. OPTICS LETTERS 2024; 49:3194-3197. [PMID: 38824361 DOI: 10.1364/ol.525328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Here, we demonstrate the realization of hollow-core light cages (LCs) on commercial step-index fibers using 3D nanoprinting, resulting in fully fiber-integrated devices. Two different light cage geometries with record-high aspect ratio strands and unique sidewise access to the core have been implemented, exhibiting excellent optical and mechanical properties. These achievements are based on the use of 3D nanoprinting to fabricate light cages and stabilize them with customized support elements. Overall, this approach results in novel, to the best of our knowledge, fiber-interfaced hollow-core devices that combine several advantages in a lab-on-a-fiber platform that is particularly useful for diffusion-related applications in environmental sciences, nanosciences, and quantum technologies.
Collapse
|
2
|
Kim J, Bürger J, Jang B, Zeisberger M, Gargiulo J, Menezes LDS, Maier SA, Schmidt MA. 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy. OPTICS EXPRESS 2023; 31:2833-2845. [PMID: 36785288 DOI: 10.1364/oe.475794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the anti-resonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
Collapse
|
3
|
Kim J, Förster R, Wieduwilt T, Jang B, Bürger J, Gargiulo J, de S Menezes L, Rossner C, Fery A, Maier SA, Schmidt MA. Locally Structured On-Chip Optofluidic Hollow-Core Light Cages for Single Nanoparticle Tracking. ACS Sens 2022; 7:2951-2959. [PMID: 36260351 DOI: 10.1021/acssensors.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanoparticle tracking analysis (NTA) is a widely used methodology to investigate nanoscale systems at the single species level. Here, we introduce the locally structured on-chip optofluidic hollow-core light cage, as a novel platform for waveguide-assisted NTA. This hollow waveguide guides light by the antiresonant effect in a sparse array of dielectric strands and includes a local modification to realize aberration-free tracking of individual nano-objects, defining a novel on-chip solution with properties specifically tailored for NTA. The key features of our system are (i) well-controlled nano-object illumination through the waveguide mode, (ii) diffraction-limited and aberration-free imaging at the observation site, and (iii) a high level of integration, achieved by on-chip interfacing to fibers. The present study covers all aspects relevant for NTA including design, simulation, implementation via 3D nanoprinting, and optical characterization. The capabilities of the approach to precisely characterize practically relevant nanosystems have been demonstrated by measuring the solvency-induced collapse of a nanoparticle system which includes polymer brush-based shells that react to changes in the liquid environment. Our study unlocks the advantages of the light cage approach in the context of NTA, suggesting its application in various areas such as bioanalytics, life science, environmental science, or nanoscale material science in general.
Collapse
Affiliation(s)
- Jisoo Kim
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Bumjoon Jang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Julian Gargiulo
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,Departamento de Física, Universidade Federal de Pernambuco, 50670-901Recife-PE, Brazil
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,The Blackett Laboratory, Department of Physics, Imperial College London, LondonSW7 2AZ, United Kingdom.,School of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany.,Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743Jena, Germany
| |
Collapse
|
4
|
Bürger J, Schalles V, Kim J, Jang B, Zeisberger M, Gargiulo J, de S. Menezes L, Schmidt MA, Maier SA. 3D-Nanoprinted Antiresonant Hollow-Core Microgap Waveguide: An on-Chip Platform for Integrated Photonic Devices and Sensors. ACS PHOTONICS 2022; 9:3012-3024. [PMID: 36164483 PMCID: PMC9501922 DOI: 10.1021/acsphotonics.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 05/25/2023]
Abstract
Due to their unique capabilities, hollow-core waveguides are playing an increasingly important role, especially in meeting the growing demand for integrated and low-cost photonic devices and sensors. Here, we present the antiresonant hollow-core microgap waveguide as a platform for the on-chip investigation of light-gas interaction over centimeter-long distances. The design consists of hollow-core segments separated by gaps that allow external access to the core region, while samples with lengths up to 5 cm were realized on silicon chips through 3D-nanoprinting using two-photon absorption based direct laser writing. The agreement of mathematical models, numerical simulations and experiments illustrates the importance of the antiresonance effect in that context. Our study shows the modal loss, the effect of gap size and the spectral tuning potential, with highlights including extremely broadband transmission windows (>200 nm), very high contrast resonance (>60 dB), exceptionally high structural openness factor (18%) and spectral control by nanoprinting (control over dimensions with step sizes (i.e., increments) of 60 nm). The application potential was demonstrated in the context of laser scanning absorption spectroscopy of ammonia, showing diffusion speeds comparable to bulk diffusion and a low detection limit. Due to these unique properties, application of this platform can be anticipated in a variety of spectroscopy-related fields, including bioanalytics, environmental sciences, and life sciences.
Collapse
Affiliation(s)
- Johannes Bürger
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
| | - Vera Schalles
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Jisoo Kim
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Bumjoon Jang
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Matthias Zeisberger
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Julian Gargiulo
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
- Departmento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife-PE Brazil
| | - Markus A. Schmidt
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Abbe
Center of Photonics and Faculty of Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Otto
Schott Institute of Materials Research (OSIM), Friedrich-Schiller-Universität Jena, Fraunhoferstr. 6, 07743 Jena, Germany
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany
- School
of
Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Parker HE, Sengupta S, Harish AV, Soares RRG, Joensson HN, Margulis W, Russom A, Laurell F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep 2022; 12:3539. [PMID: 35241725 PMCID: PMC8894408 DOI: 10.1038/s41598-022-07306-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula: see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.
Collapse
Affiliation(s)
- Helen E. Parker
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.9531.e0000000106567444Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Sanghamitra Sengupta
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.417889.b0000 0004 0646 2441AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Achar V. Harish
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Ruben R. G. Soares
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Haakan N. Joensson
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Walter Margulis
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,Research Institutes of Sweden (RISE), 164 19 Stockholm, Sweden
| | - Aman Russom
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden ,grid.5037.10000000121581746AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Laurell
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Violi IL, Martinez LP, Barella M, Zaza C, Chvátal L, Zemánek P, Gutiérrez MV, Paredes MY, Scarpettini AF, Olmos-Trigo J, Pais VR, Nóblega ID, Cortes E, Sáenz JJ, Bragas AV, Gargiulo J, Stefani FD. Challenges on optical printing of colloidal nanoparticles. J Chem Phys 2022; 156:034201. [DOI: 10.1063/5.0078454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ianina L. Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Instituto de Nanosistemas, UNSAM-CONICET, Ave. 25 de Mayo 1021, San Martín 1650, Argentina
| | - Luciana P. Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
| | - Mariano Barella
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Lukáš Chvátal
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Marina V. Gutiérrez
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - María Y. Paredes
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - Alberto F. Scarpettini
- Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
| | - Jorge Olmos-Trigo
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, País Vasco, Spain
| | - Valeria R. Pais
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Iván Díaz Nóblega
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Emiliano Cortes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Juan José Sáenz
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, País Vasco, Spain
| | - Andrea V. Bragas
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| | - Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Fernando D. Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, CABA 2390, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes, CABA 2620, Argentina
| |
Collapse
|
7
|
Panusa G, Dinc NU, Psaltis D. Photonic waveguide bundles using 3D laser writing and deep neural network image reconstruction. OPTICS EXPRESS 2022; 30:2564-2577. [PMID: 35209393 DOI: 10.1364/oe.446775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In recent years, three-dimensional (3D) printing with multi-photon laser writing has become an essential tool for the manufacturing of three-dimensional optical elements. Single-mode optical waveguides are one of the fundamental photonic components, and are the building block for compact multicore fiber bundles, where thousands of single-mode elements are closely packed, acting as individual pixels and delivering the local information to a sensor. In this work, we present the fabrication of polymer rectangular step-index (STIN) optical waveguide bundles in the IP-Dip photoresist, using a commercial 3D printer. Moreover, we reduce the core-to-core spacing of the imaging bundles by means of a deep neural network (DNN) which has been trained with a large synthetic dataset, demonstrating that the scrambling of information due to diffraction and cross-talk between fiber cores can be undone. The DNN-based approach can be adopted in applications such as on-chip platforms and microfluidic systems where accurate imaging from in-situ printed fiber bundles suffer cross-talk. In this respect, we provide a design and fabrication guideline for such scenarios by employing the DNN not only as a post-processing technique but also as a design optimization tool.
Collapse
|
8
|
Jiang S, Förster R, Lorenz A, Schmidt MA. Three-dimensional tracking of nanoparticles by dual-color position retrieval in a double-core microstructured optical fiber. LAB ON A CHIP 2021; 21:4437-4444. [PMID: 34617084 DOI: 10.1039/d1lc00709b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elastic light scattering-based three-dimensional (3D) tracking of objects at the nanoscale level is essential for unlocking the dynamics of individual species or interactions in fields such as biology or surface chemistry. In this work, we introduce the concept of dual-color 3D tracking in a double-core microstructured optical fiber that for the first time allows for full 3D reconstruction of the trajectory of a diffusing nanoparticle in a water-filled fiber-integrated microchannel. The use of two single-mode cores provides two opposite decaying evanescent fields of different wavelengths within the microchannel, bypassing spatial domains of ambiguous correlation between the scattered intensity and position. The novelty of the fiber design is the use of two slightly different single-mode cores, preventing modal crosstalk and thus allowing for longitudinally invariant dual-color illumination across the entire field of view. To demonstrate the capabilities of the scheme, a single gold nanosphere (80 nm) diffusing in the water-filled microchannel was tracked for a large number of images (about 32 000) at a high frame rate (1.389 kHz) over a long time (23 s), with the determined hydrodynamic diameters matching expectations. The presented 3D tracking approach yields unique opportunities to unlock processes at the nanoscale level and is highly relevant for a multitude of fields, particularly within the context of understanding sophisticated interaction of diffusing species with functionalized surfaces within the context of bioanalytics, nanoscale materials science, surface chemistry or life science.
Collapse
Affiliation(s)
- Shiqi Jiang
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
| | - Adrian Lorenz
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
- Otto Schott Institute of Material Research, FSU Jena, 07745 Jena, Germany
| |
Collapse
|