1
|
Song C, Jin G, Yu D, Guo Z, Liang X. A nitrogenous heterocyclic ring-bonded stationary phase for separating alkaloids in supercritical fluid chromatography. J Chromatogr A 2024; 1720:464811. [PMID: 38490143 DOI: 10.1016/j.chroma.2024.464811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
A novel silica stationary phase was designed and prepared through thiol-epoxy click chemistry for supercritical fluid chromatography (SFC). The developed stationary phase was characterized by elemental analysis, Fourier transform infrared spectrometry and solid-state 13C/CP MAS NMR spectroscopy. In order to evaluate the chromatographic performance and retention mechanisms of the prepared column, a variety of alkaloids were used, including indoles, isoquinolines, pyrrolidines, piperidines, quinolizidines and organic amines. The stationary phase showed more symmetrical peak shapes and better performance for these compounds compared to the conventional SFC stationary phases. The investigations on the effects of pressure and temperature on retention provided information that the selectivity of the compounds can be improved by changing the density of the supercritical fluids. Moreover, it shows improved separation efficiency of three natural products with alkaloids as the main components at high sample loading. In conclusion, the developed stationary phase could offer flexible selectivity toward alkaloids and complex samples.
Collapse
Affiliation(s)
- Chunying Song
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
2
|
Mostafa ME, Grinias JP, Edwards JL. Supercritical Fluid Nanospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1825-1832. [PMID: 36049155 DOI: 10.1021/jasms.2c00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5-1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15-25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
3
|
Advanced Development of Supercritical Fluid Chromatography in Herbal Medicine Analysis. Molecules 2022; 27:molecules27134159. [PMID: 35807405 PMCID: PMC9268462 DOI: 10.3390/molecules27134159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
The greatest challenge in the analysis of herbal components lies in their variety and complexity. Therefore, efficient analytical tools for the separation and qualitative and quantitative analysis of multi-components are essential. In recent years, various emerging analytical techniques have offered significant support for complicated component analysis, with breakthroughs in selectivity, sensitivity, and rapid analysis. Among these techniques, supercritical fluid chromatography (SFC) has attracted much attention because of its high column efficiency and environmental protection. SFC can be used to analyze a wide range of compounds, including non-polar and polar compounds, making it a prominent analytical platform. The applicability of SFC for the separation and determination of natural products in herbal medicines is overviewed in this article. The range of applications was expanded through the selection and optimization of stationary phases and mobile phases. We also focus on the two-dimensional SFC analysis. This paper provides new insight into SFC method development for herbal medicine analysis.
Collapse
|
4
|
Rédei C, Felinger A. The impact of placement, experimental conditions, and injections on mass flow measurements in supercritical fluid chromatography. J Chromatogr A 2022; 1668:462919. [DOI: 10.1016/j.chroma.2022.462919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
5
|
A perspective on enantioselective chromatography by comparing ultra-high performance supercritical fluid chromatography and normal-phase liquid chromatography through the use of a Pirkle-type stationary phase. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Gazárková T, Plachká K, Svec F, Nováková L. Current state of supercritical fluid chromatography-mass spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Fornstedt T, Enmark M, Samuelsson J. Method transfer in SFC from a fundamental perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Application space for SFC in pharmaceutical drug discovery and development. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
The adsorption of methanol on reversed phase stationary phases in supercritical fluid chromatography. J Chromatogr A 2021; 1653:462386. [PMID: 34274884 DOI: 10.1016/j.chroma.2021.462386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
The surface excess isotherms of methanol from carbon dioxide on reversed phase stationary phases under two different operational conditions - which can be considered subcritical and supercritical conditions depending on the molar fraction of CO2 in methanol - were determined using the minor disturbance peak method. The shapes of the surface excess isotherms were very similar in subcritical and supercritical conditions for the same column. To verify the influence of the sample solvent on the separation efficiency, two solvents methanol and heptane were used as sample solvents for alkylbenzene samples for the separation on the studied columns with pure carbon dioxide mobile phase. The separation efficiency was determined by calculating the number of theoretical plates. On the embedded amide stationary phase with methanol as a sample solvent the efficiency has increased due to the displacement effect of methanol on the solutes which are retained less than methanol. Then the efficiency for the rest of solutes, which coincide with the elution of the methanol peak tail has decreased as a result of the tag-along effect. The surface adsorbent heterogeneity has been discussed; the bonded ligands on the stationary phase surface demonstrated adsorption a big amount of CO2, while methanol could adsorb with small amount on the residual silanols on the surface of stationary phase and the embedded (amide) polar group in the bonded phase.
Collapse
|
11
|
Mert Ozupek N, Cavas L. Modelling of multilinear gradient retention time of bio-sweetener rebaudioside A in HPLC analysis. Anal Biochem 2021; 627:114248. [PMID: 34022188 DOI: 10.1016/j.ab.2021.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Artificial neural network (ANN), as one of the artificial intelligence methods, has been widely using in HPLC studies for modelling purposes. Stevia rebaudiana is an important industrial plant due to its bio-sweetener molecule, rebaudioside-a, in its leaves. Although rebaudioside-a is up to 300-fold sweeter than sucrose, its calorie is almost zero. In this study, HPLC optimization of rebaudioside-a was studied and the optimization data based on multilinear gradient retention times were modelled by ANN. The input parameters were selected as concentrations, column temperatures, initial acetonitrile percentage for the first step of gradient elution, initial acetonitrile percentage for the second step of gradient elution, slope of acetonitrile, wavelengths, flow rates. The retention time was the output. Also, dried S. rebaudiana leaves were extracted and the concentrations were evaluated by HPLC. According to the ANN results, the most effective parameters on the prediction of non-linear gradient retention time for rebaudioside-a were found as flow rate and initial acetonitrile percentage for the second step of gradient. The best back propagation was selected as Levenberg-Marquardt algorithm. The highest rebaudioside-a level was found as 96.53 ± 6.36 μg mL-1. ANN modelling methods can be used in preparative HPLC applications to estimate the retention time of steviol glycosides.
Collapse
Affiliation(s)
- Nazli Mert Ozupek
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, 35160, İzmir, Turkey
| | - Levent Cavas
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, 35160, İzmir, Turkey; Faculty of Sciences, Department of Chemistry, Dokuz Eylül University, 35390, İzmir, Turkey.
| |
Collapse
|
12
|
Hondo T, Ota C, Miyake Y, Furutani H, Toyoda M. Analysis of Nonvolatile Molecules in Supercritical Carbon Dioxide Using Proton-Transfer-Reaction Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2021; 93:6589-6593. [PMID: 33891393 DOI: 10.1021/acs.analchem.1c00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-transfer-reaction (PTR) mass spectrometry (MS) is capable of detecting trace-level volatile organic compounds (VOCs) in gaseous samples in real time. Therefore, PTR-MS has become a popular method in many different study areas. Most of the currently reported PTR-MS applications are designed to determine volatile compounds. However, the method might be applicable for nonvolatile organic compound detection. Supercritical fluid chromatography (SFC) has been studied in the last 5 decades. This approach has high separation efficiency and predictable retention behavior, making separation optimization easy. Atmospheric ionization techniques, such as atmospheric chemical ionization (APCI) and electrospray ionization (ESI), are the most studied SFC-MS interfaces. These processes require the addition of makeup solvents to prevent precipitation or crystallization of the solute while depressurizing the mobile phase. In contrast, the PTR process is carried out in a vacuum; supercritical carbon dioxide may release solute into the PTR flow tube without a phase transition as long as it is maintained above a critical temperature. Therefore, this might constitute yet another use for the SFC-MS interface. Caffeine and a few other nonpolar compounds in supercritical carbon dioxide were successfully detected with time-of-flight MS without adding solvent by using preliminarily assembled supercritical flow injection and supercritical fluid extraction (SFE)-PTR interfaces.
Collapse
Affiliation(s)
- Toshinobu Hondo
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,MS-Cheminformatics LLC, 2-13-21 Sasaonishi, Toin, Mie 511-0231, Japan
| | - Chihiro Ota
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yumi Miyake
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Furutani
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Center for Scientific Instrument Renovation and Manufacturing Support, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michisato Toyoda
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Enmark M, Samuelsson J, Fornstedt T. A Retention-Matching Strategy for Method Transfer in Supercritical Fluid Chromatography: Introducing the Isomolar Plot Approach. Anal Chem 2021; 93:6385-6393. [PMID: 33844504 PMCID: PMC8153393 DOI: 10.1021/acs.analchem.0c05142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A strategy to match
any retention shifts due to increased or decreased
pressure drop during supercritical fluid chromatography (SFC) method
transfer is presented. The strategy relies on adjusting the co-solvent
molarity without the need to adjust the back-pressure regulator. Exact
matching can be obtained with minimal changes in separation selectivity.
To accomplish this, we introduce the isomolar plot approach, which
shows the variation in molar co-solvent concentration depending on
the mass fraction of co-solvent, pressure, and temperature, here exemplified
by CO2–methanol. This plot allowed us to unify the
effects of the co-solvent mass fraction and density on retention in
SFC. The approach, which was verified on 12 known empirical retention
models for each enantiomer of six basic pharmaceuticals, allowed us
to numerically calculate the apparent retention factor for any column
pressure drop. The strategy can be implemented either using a mechanistic
approach if retention models are known or empirically by iteratively
adjusting the co-solvent mass fraction. As a rule of thumb for the
empirical approach, we found that the relative mass fraction adjustment
needed is proportional to the relative change in the retention factor
caused by a change in the pressure drop. Different proportionality
constants were required to match retention in the case of increasing
or decreasing pressure drops.
Collapse
Affiliation(s)
- Martin Enmark
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| |
Collapse
|
14
|
Vervoort N, Goossens K, Baeten M, Chen Q. Recent advances in analytical techniques for high throughput experimentation. ANALYTICAL SCIENCE ADVANCES 2021; 2:109-127. [PMID: 38716456 PMCID: PMC10989611 DOI: 10.1002/ansa.202000155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
High throughput experimentation is a growing and evolving field that allows to execute dozens to several thousands of experiments per day with relatively limited resources. Through miniaturization, typically a high degree of automation and the use of digital data tools, many parallel reactions or experiments at a time can be run in such workflows. High throughput experimentation also requires fast analytical techniques capable of generating critically important analytical data in line with the increased rate of experimentation. As traditional techniques usually do not deliver the speed required, some unique approaches are required to enable workflows to function as designed. This review covers the recent developments (2019-2020) in this field and was intended to give a comprehensive overview of the current "state-of-the-art."
Collapse
Affiliation(s)
- Nico Vervoort
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Karel Goossens
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Mattijs Baeten
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Qinghao Chen
- Chemical Process R&DHigh Throughput ExperimentationJanssen R&DBeerseBelgium
| |
Collapse
|