1
|
Ma Q, Sun J, Liu Q, Fu J, Wen Y, Zhang F, Wu Y, Zhang X, Gong L, Zhang W. Identification of a biomarker to predict doxorubicin/cisplatin chemotherapy efficacy in osteosarcoma patients using primary, recurrent and metastatic specimens. Transl Oncol 2024; 49:102098. [PMID: 39153366 PMCID: PMC11381801 DOI: 10.1016/j.tranon.2024.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Doxorubicin and cisplatin are both first-line chemotherapeutics for osteosarcoma (OS) treatment. However, the efficacy of doxorubicin/cisplatin chemotherapy varies considerably. Thus, identifying an efficient diagnostic biomarker to distinguish patients with good and poor responses to doxorubicin/cisplatin chemotherapy is of paramount importance. METHODS To predict the efficacy of doxorubicin/cisplatin chemotherapy, we analyzed the differentially expressed proteins in 37 resected OS samples, which were categorized into the primary group (PG), the recurrent group (RG) and the metastatic group (MG). The characteristics of the enriched differentially expressed proteins were assessed via GO and KEGG analyses. Protein‒protein interactions were identified to determine the relationships among the differentially expressed proteins. Receiver operating characteristic (ROC) curve analyses were performed to explore the clinical significance of the differentially expressed proteins. Parallel reaction monitoring (PRM) was used to validate the candidate proteins. Immunohistochemical (IHC) staining was performed to confirm the expression of cathepsin (CTSG) in patients with good and poor response to doxorubicin/cisplatin. RESULTS A total of 9458 proteins were identified and quantified, among which 143 and 208 exhibited significant changes (|log2FC|>1, p < 0.05) in the RG and MG compared with the PG, respectively. GO and KEGG enrichment led to the identification of neutrophil extracellular traps (NETs). ROC curve analyses revealed 74 and 86 proteins with areas under the curve greater than 0.7 in the RG and MG, respectively. PRM validation revealed the statistical significance of CTSG, which is involved in NET formation, at the protein level in both the RG and MG. IHC staining of another cohort revealed that CTSG was prominently upregulated in the poor response group after treatment with doxorubicin/cisplatin. CONCLUSION CTSG and its associated NETs are potential biomarkers with which the efficacy of doxorubicin/cisplatin chemotherapy could be predicted in OS patients.
Collapse
Affiliation(s)
- Qiong Ma
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China; Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Jin Sun
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Jin Fu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Fuqin Zhang
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yonghong Wu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Xiaoyu Zhang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China.
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
2
|
Tomioka R, Ogata K, Ishihama Y. Quantitation of Host Cell Proteins by Capillary LC/IMS/MS/MS in Combination with Rapid Digestion on Immobilized Trypsin Column Under Native Conditions. Mass Spectrom (Tokyo) 2024; 13:A0152. [PMID: 39296308 PMCID: PMC11409222 DOI: 10.5702/massspectrometry.a0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024] Open
Abstract
Host cell protein (HCP) impurities are considered a critical quality attribute of biopharmaceuticals because of their potential to compromise safety and efficacy, and LC/MS-based analytical methods have been developed to identify and quantify individual proteins instead of employing enzyme-linked immunosorbent assay to assess total HCP levels. Native digestion enables highly sensitive detection of HCPs but requires overnight incubation to generate peptides, limiting the throughput of sample preparation. In this study, we developed an approach employing native digestion on a trypsin-immobilized column to improve the sensitivity and throughput. We examined suitable databases for the identification of HCPs derived from Chinese hamster ovary (CHO) cells and selected RefSeq's Chinese Hamster as the optimal database. Then, we investigated methods to identify HCPs with greater efficiency than that of denatured in-solution digestion. Native in-column digestion not only reduced the digestion time from overnight to 10 min but also increased the number of quantified HCPs from 154 to 226. In addition to this rapid digestion methodology, we developed high-throughput LC/MS/MS with a monolithic silica column and parallel reaction monitoring-parallel accumulation-serial fragmentation. The optimized system was validated with synthetic peptides derived from high-risk HCPs, confirming excellent linearity, precision, accuracy, and low limit of detection (LOD) and limit of quantification (LOQ) (1-3 ppm). The optimized digestion and analysis method enabled high-throughput quantification of HCPs, and is expected to be useful for quality control and characterization of HCPs in antibody drugs.
Collapse
Affiliation(s)
- Ryota Tomioka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Shionogi & Co., Ltd., Pharmaceutical Technology Research Division, Toyonaka, Osaka 561-0825, Japan
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
3
|
Mendes ML, Borrmann KF, Dittmar G. Eleven shades of PASEF. Expert Rev Proteomics 2024; 21:367-376. [PMID: 39435569 DOI: 10.1080/14789450.2024.2413092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The introduction of trapped ion mobility spectrometry (TIMS) in combination with fast high-resolution time-of-flight (TOF) mass spectrometry to the proteomics field led to a jump in protein identifications and quantifications, as well as a lowering of the limit of detection for proteins from biological samples. Parallel Accumulation-Serial Fragmentation (PASEF) is a driving force for this development and has been adapted to discovery as well as targeted proteomics. AREAS COVERED Over the last decade, the PASEF concept has been optimized and led to the implementation of eleven new measurement techniques. In this review, we describe all currently described PASEF measurement techniques and their application to clinical proteomics. Literature was searched using PubMed and Google Scholar search engines. EXPERT OPINION The use of a dual TIMS tunnel has revolutionized the depth and the speed of proteomics measurements. Currently, we witness how this technique is pushing clinical proteomics forward.
Collapse
Affiliation(s)
- Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Klara F Borrmann
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
4
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Lundgren T, Clark PL, Champion MM. Fit for Purpose Approach To Evaluate Detection of Amino Acid Substitutions in Shotgun Proteomics. J Proteome Res 2024; 23:1263-1271. [PMID: 38478054 PMCID: PMC11003417 DOI: 10.1021/acs.jproteome.3c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Amino acid substitutions (AASs) alter proteins from their genome-expected sequences. Accumulation of substitutions in proteins underlies numerous diseases and antibiotic mechanisms. Accurate global detection of AASs and their frequencies is crucial for understanding these mechanisms. Shotgun proteomics provides an untargeted method for measuring AASs but introduces biases when extrapolating from the genome to identify AASs. To characterize these biases, we created a "ground-truth" approach using the similarities betweenEscherichia coli and Salmonella typhimurium to model the complexity of AAS detection. Shotgun proteomics on mixed lysates generated libraries representing ∼100,000 peptide-spectra and 4161 peptide sequences with a single AAS and defined stoichiometry. Identifying S. typhimurium peptide-spectra with only the E. coli genome resulted in 64.1% correctly identified library peptides. Specific AASs exhibit variable identification efficiencies. There was no inherent bias from the stoichiometry of the substitutions. Short peptides and AASs localized near peptide termini had poor identification efficiency. We identify a new class of "scissor substitutions" that gain or lose protease cleavage sites. Scissor substitutions also had poor identification efficiency. This ground-truth AAS library reveals various sources of bias, which will guide the application of shotgun proteomics to validate AAS hypotheses.
Collapse
Affiliation(s)
- Taylor
J. Lundgren
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia L. Clark
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Matthew M. Champion
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Wenk D, Zuo C, Kislinger T, Sepiashvili L. Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. Clin Proteomics 2024; 21:6. [PMID: 38287260 PMCID: PMC10826105 DOI: 10.1186/s12014-024-09452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
Routine measurement of cancer biomarkers is performed for early detection, risk classification, and treatment monitoring, among other applications, and has substantially contributed to better clinical outcomes for patients. However, there remains an unmet need for clinically validated assays of cancer protein biomarkers. Protein tumor markers are of particular interest since proteins carry out the majority of biological processes and thus dynamically reflect changes in cancer pathophysiology. Mass spectrometry-based targeted proteomics is a powerful tool for absolute peptide and protein quantification in biological matrices with numerous advantages that make it attractive for clinical applications in oncology. The use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methodologies has allowed laboratories to overcome challenges associated with immunoassays that are more widely used for tumor marker measurements. Yet, clinical implementation of targeted proteomics methodologies has so far been limited to a few cancer markers. This is due to numerous challenges associated with paucity of robust validation studies of new biomarkers and the labor-intensive and operationally complex nature of LC-MS/MS workflows. The purpose of this review is to provide an overview of targeted proteomics applications in cancer, workflows used in targeted proteomics, and requirements for clinical validation and implementation of targeted proteomics assays. We will also discuss advantages and challenges of targeted MS-based proteomics assays for clinical cancer biomarker analysis and highlight some recent developments that will positively contribute to the implementation of this technique into clinical laboratories.
Collapse
Affiliation(s)
- Deborah Wenk
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Charlotte Zuo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Research Tower, Room 9-807, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| | - Lusia Sepiashvili
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Rm 3606, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Sickkids Research Institute, Toronto, ON, Canada.
| |
Collapse
|
7
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
8
|
Heuckeroth S, Behrens A, Wolf C, Fütterer A, Nordhorn ID, Kronenberg K, Brungs C, Korf A, Richter H, Jeibmann A, Karst U, Schmid R. On-tissue dataset-dependent MALDI-TIMS-MS 2 bioimaging. Nat Commun 2023; 14:7495. [PMID: 37980348 PMCID: PMC10657435 DOI: 10.1038/s41467-023-43298-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS2) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS2 spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion. Extendable data processing and evaluation workflows are implemented into the open source software MZmine. The workflow and annotation capabilities are demonstrated on rat brain tissue thin sections, measured by matrix-assisted laser desorption/ionisation (MALDI)-TIMS-MS, where SIMSEF enables on-tissue compound annotation through spectral library matching and rule-based lipid annotation within MZmine and maps the (un)known chemical space by molecular networking. The SIMSEF algorithm and data analysis pipelines are open source and modular to provide a community resource.
Collapse
Affiliation(s)
- Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | | | - Carina Wolf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | | | - Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ansgar Korf
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Henning Richter
- Clinic for Diagnostic Imaging, Diagnostic Imaging Research Unit (DIRU), University of Zurich, Zürich, Switzerland
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Robin Schmid
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Göldner V, Quach L, Adhitama E, Behrens A, Junk L, Winter M, Placke T, Glorius F, Karst U. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries. iScience 2023; 26:107517. [PMID: 37636078 PMCID: PMC10448071 DOI: 10.1016/j.isci.2023.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Laser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a complementary technique for the analysis of interphases formed at electrode|electrolyte interfaces in lithium ion batteries (LIBs). An understanding of these interphases is crucial for designing interphase-forming electrolyte formulations and increasing battery lifetime. Especially organic species are analyzed more effectively using LDI-MS than with established methodologies. The combination with trapped ion mobility spectrometry and tandem mass spectrometry yields additional structural information of interphase components. Furthermore, LDI-MS imaging reveals the lateral distribution of compounds on the electrode surface. Using the introduced methods, a deeper understanding of the mechanism of action of the established solid electrolyte interphase-forming electrolyte additive 3,4-dimethyloxazolidine-2,5-dione (Ala-N-CA) for silicon/graphite anodes is obtained, and active electrochemical transformation products are unambiguously identified. In the future, LDI-MS will help to provide a deeper understanding of interfacial processes in LIBs by using it in a multimodal approach with other surface analysis methods to obtain complementary information.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Linda Quach
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Egy Adhitama
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Luisa Junk
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Martin Winter
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
| | - Tobias Placke
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
| | - Frank Glorius
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Mun DG, Bhat FA, Ding H, Madden BJ, Natesampillai S, Badley AD, Johnson KL, Kelly RT, Pandey A. Optimizing single cell proteomics using trapped ion mobility spectrometry for label-free experiments. Analyst 2023; 148:3466-3475. [PMID: 37395315 PMCID: PMC10370902 DOI: 10.1039/d3an00080j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/10/2023] [Indexed: 07/04/2023]
Abstract
Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.
Collapse
Affiliation(s)
- Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | - Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | | | | | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Rudt E, Feldhaus M, Margraf CG, Schlehuber S, Schubert A, Heuckeroth S, Karst U, Jeck V, Meyer SW, Korf A, Hayen H. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Anal Chem 2023. [PMID: 37307407 DOI: 10.1021/acs.analchem.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The parallel accumulation-serial fragmentation (PASEF) approach based on trapped ion mobility spectrometry (TIMS) enables mobility-resolved fragmentation and a higher number of fragments in the same time period compared to conventional MS/MS experiments. Furthermore, the ion mobility dimension offers novel approaches for fragmentation. Using parallel reaction monitoring (prm), the ion mobility dimension allows a more accurate selection of precursor windows, while using data-independent aquisition (dia) spectral quality is improved through ion-mobility filtering. Owing to favorable implementation in proteomics, the transferability of these PASEF modes to lipidomics is of great interest, especially as a result of the high complexity of analytes with similar fragments. However, these novel PASEF modes have not yet been thoroughly evaluated for lipidomics applications. Therefore, data-dependent acquisition (dda)-, dia-, and prm-PASEF were compared using hydrophilic interaction liquid chromatography (HILIC) for phospholipid class separation in human plasma samples. Results show that all three PASEF modes are generally suitable for usage in lipidomics. Although dia-PASEF achieves a high sensitivity in generating MS/MS spectra, the fragment-to-precursor assignment for lipids with both, similar retention time as well as ion mobility, was difficult in HILIC-MS/MS. Therefore, dda-PASEF is the method of choice to investigate unknown samples. However, the best data quality was achieved by prm-PASEF, owing to the focus on fragmentation of specified targets. The high selectivity and sensitivity in generating MS/MS spectra of prm-PASEF could be a potential alternative for targeted lipidomics, e.g., in clinical applications.
Collapse
Affiliation(s)
- E Rudt
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - M Feldhaus
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - C G Margraf
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Schlehuber
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - A Schubert
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Heuckeroth
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - U Karst
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - V Jeck
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - S W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - A Korf
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - H Hayen
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
12
|
Jones J, MacKrell EJ, Wang TY, Lomenick B, Roukes ML, Chou TF. Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization. BMC Bioinformatics 2023; 24:239. [PMID: 37280522 DOI: 10.1186/s12859-023-05360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The analysis of mass spectrometry-based quantitative proteomics data can be challenging given the variety of established analysis platforms, the differences in reporting formats, and a general lack of approachable standardized post-processing analyses such as sample group statistics, quantitative variation and even data filtering. We developed tidyproteomics to facilitate basic analysis, improve data interoperability and potentially ease the integration of new processing algorithms, mainly through the use of a simplified data-object. RESULTS The R package tidyproteomics was developed as both a framework for standardizing quantitative proteomics data and a platform for analysis workflows, containing discrete functions that can be connected end-to-end, thus making it easier to define complex analyses by breaking them into small stepwise units. Additionally, as with any analysis workflow, choices made during analysis can have large impacts on the results and as such, tidyproteomics allows researchers to string each function together in any order, select from a variety of options and in some cases develop and incorporate custom algorithms. CONCLUSIONS Tidyproteomics aims to simplify data exploration from multiple platforms, provide control over individual functions and analysis order, and serve as a tool to assemble complex repeatable processing workflows in a logical flow. Datasets in tidyproteomics are easy to work with, have a structure that allows for biological annotations to be added, and come with a framework for developing additional analysis tools. The consistent data structure and accessible analysis and plotting tools also offers a way for researchers to save time on mundane data manipulation tasks.
Collapse
Affiliation(s)
- Jeff Jones
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Elliot J MacKrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Michael L Roukes
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
13
|
Lesur A, Bernardin F, Koncina E, Letellier E, Kruppa G, Schmit PO, Dittmar G. Quantification of 782 Plasma Peptides by Multiplexed Targeted Proteomics. J Proteome Res 2023. [PMID: 37011904 DOI: 10.1021/acs.jproteome.2c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Blood analysis is one of the foundations of clinical diagnostics. In recent years, the analysis of proteins in blood samples by mass spectrometry has taken a jump forward in terms of sensitivity and the number of identified proteins. The recent development of parallel reaction monitoring with parallel accumulation and serial fragmentation (prm-PASEF) combines ion mobility as an additional separation dimension. This increases the proteome coverage while allowing the use of shorter chromatographic gradients. To demonstrate the method's full potential, we used an isotope-labeled synthetic peptide mix of 782 peptides, derived from 579 plasma proteins, spiked into blood plasma samples with a prm-PASEF measurement allowing the quantification of 565 plasma proteins by targeted proteomics. As a less time-consuming alternative to the prm-PASEF method, we describe guided data independent acquisition (dia)-PASEF (g-dia-PASEF) and compare its application to prm-PASEF for measuring blood plasma. To demonstrate both methods' performance in clinical samples, 20 patient plasma samples from a colorectal cancer (CRC) cohort were analyzed. The analysis identified 14 differentially regulated proteins between the CRC patient and control individual plasma samples. This shows the technique's potential for the rapid and unbiased screening of blood proteins, abolishing the need for the preselection of potential biomarker proteins.
Collapse
Affiliation(s)
- Antoine Lesur
- Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | | | - Eric Koncina
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Gary Kruppa
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | | | - Gunnar Dittmar
- Luxembourg Institute of Health, Strassen L-1445, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| |
Collapse
|
14
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
15
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Wolf C, Behrens A, Brungs C, Mende ED, Lenz M, Piechutta PC, Roblick C, Karst U. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry. Anal Chim Acta 2023; 1242:340796. [PMID: 36657890 DOI: 10.1016/j.aca.2023.340796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/04/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
In this work, trapped ion mobility spectrometry (TIMS) was introduced to facilitate tandem mass spectrometry (MS2) experiments for laser desorption/ionization-mass spectrometry (LDI-MS) as mobility-resolved fragmentation. The mobility separation of desorbed ions was followed by subsequent fragmentation using data-independent broadband collision-induced dissociation (bbCID) or targeted fragmentation through a prototypic version of parallel reaction monitoring-parallel accumulation serial fragmentation (prm-PASEF) for LDI. Both mobility-resolved fragmentation options, TIMS-bbCID and prm-PASEF, were applied to LDI point measurements to identify organic pigments in tattoo inks. Furthermore, the prototypic prm-PASEF algorithm was used in imaging applications to increase confidence in annotating organic tattoo pigments in skin samples with adverse reactions. Due to less complex spectra in matrix-free LDI, both fragmentation methods yielded fast and reliable MS2 identification workflows. TIMS-bbCID was especially beneficial for the rapid acquisition of multiple fragment spectra. For the targeted prm-PASEF approach, analytes' mobilities needed to be collected prior to simplified fragmentation. Therefore, a reference list for 14 pigments was created. The possible number of experiments per thin section and the associated savings in analysis time compared to conventional MS2 were particularly suitable for the imaging application. Furthermore, the mobility dimension enabled a new orthogonal identification parameter, increasing the annotation confidence of tattoo pigments through compound specific mobilities.
Collapse
Affiliation(s)
- Carina Wolf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany; Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Corinna Brungs
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Elias D Mende
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Madina Lenz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Paul C Piechutta
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Christoph Roblick
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
17
|
Hu A, Zhang J, Shen H. Progress in Targeted Mass Spectrometry (Parallel Accumulation-Serial Fragmentation) and Its Application in Plasma/Serum Proteomics. Methods Mol Biol 2023; 2628:339-352. [PMID: 36781796 DOI: 10.1007/978-1-0716-2978-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Targeted mass spectrometry using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) has been commonly used for protein biomarker validation in plasma, serum, or other clinically relevant specimens due to its high specificity, selectivity, and multiplexing capability compared with immunoassays. As the emerging mode termed parallel accumulation-serial fragmentation (prmPASEF) significantly improved analyte throughput (100-1000), sensitivity (attomole level), and acquisition speed, it promises to broaden the application of targeted mass spectrometry to simultaneous biomarker discovery and validation with high accuracy. Here, we summarize the general approach of the MRM and PRM techniques used for serum/plasma proteomics and describe a detailed step-by-step procedure for the development of MRM/PRM assays for secreted proteins.
Collapse
Affiliation(s)
- Anqi Hu
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China
| | - Jiayi Zhang
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China
| | - Huali Shen
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Mun DG, Budhraja R, Bhat FA, Zenka RM, Johnson KL, Moghekar A, Pandey A. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Proteomics 2023; 23:e2200507. [PMID: 36752121 DOI: 10.1002/pmic.202200507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
A quadrupole time-of-flight mass spectrometer coupled with a trapped ion mobility spectrometry (timsTOF) operated in parallel accumulation-serial fragmentation (PASEF) mode has recently emerged as a platform capable of providing four-dimensional (4D) features comprising of elution time, collision cross section (CCS), mass-to-charge ratio, and intensity of peptides. The PASEF mode provides ∼100% ion sampling efficiency both in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes without sacrificing sensitivity. In addition, targeted measurements using PASEF integrated parallel reaction monitoring (PRM) mode have also been described. However, only limited number of studies have used timsTOF for analysis of clinical samples. Although Orbitrap mass spectrometers have been used for biomarker discovery from cerebrospinal fluid (CSF) in a variety of neurological diseases, these Orbitrap-derived datasets cannot readily be applied for driving experiments on timsTOF mass spectrometers. We generated a catalog of peptides and proteins in human CSF in DDA mode on a timsTOF mass spectrometer and used these data to build a spectral library. This strategy allowed us to use elution times and ion mobility values from the spectral library to design PRM experiments for quantifying previously discovered biomarkers from CSF samples in Alzheimer's disease. When the same samples were analyzed using a DIA approach combined with a spectral library search, a higher number of proteins were identified than in a library-free approach. Overall, we have established a spectral library of CSF as a resource and demonstrated its utility for PRM and DIA studies, which should facilitate studies of neurological disorders.
Collapse
Affiliation(s)
- Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman M Zenka
- Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Manipal Academy of Higher Education, Manipal, Karnataka, India.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Zhang J, Hu A, Chen X, Shen F, Zhang L, Lin Y, Shen H. Pan‐targeted quantification of deep and comprehensive cancer serum proteome improves cancer detection. VIEW 2023. [DOI: 10.1002/viw.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jiayi Zhang
- Minhang Hospital and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Anqi Hu
- Minhang Hospital and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xuguang Chen
- Informatization Office Fudan University Shanghai China
| | - Fenglin Shen
- Minhang Hospital and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yuxiang Lin
- Department of Breast Surgery Fujian Medical University Union Hospital Fuzhou China
- Department of General Surgery Fujian Medical University Union Hospital Fuzhou China
- Breast Cancer Institute Fujian Medical University Fuzhou China
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences Fudan University Shanghai China
- NHC Key Laboratory of Glycoconjugates Research Fudan University Shanghai China
| |
Collapse
|
20
|
Hu A, Zhang L, Wang Z, Yuan C, Lin L, Zhang J, Gao X, Chen X, Guo W, Yang P, Shen H. Cancer Serum Atlas-Supported Precise Pan-Targeted Proteomics Enable Multicancer Detection. Anal Chem 2023; 95:862-871. [PMID: 36584310 DOI: 10.1021/acs.analchem.2c03299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The wide dynamic range of serum proteome restrained discovery of clinically interested proteins in large cohort studies. Herein, we presented a high-sensitivity, high-throughput, and precise pan-targeted serum proteomic strategy for highly efficient cancer serum proteomic research and biomarker discovery. We constructed a resource of over 2000 cancer-secreted proteins, and the standard MS assays and spectra of at least one synthetic unique peptide per protein were acquired and documented (Cancer Serum Atlas, www.cancerserumatlas.com). Then, the standard peptide-anchored parallel reaction monitoring (SPA-PRM) method was developed with support of the Cancer Serum Atlas, achieving precise quantification of cancer-secreted proteins with high throughput and sensitivity. We directly quantified 325 cancer-related serum proteins in 288 serums of four cancer types (liver, stomach, lung, breast) and controls with the pan-targeted strategy and discovered considerable potential biomarker benefits for early detection of cancer. Finally, a proteomic-based multicancer detection model was built, demonstrating high sensitivity (87.2%) and specificity (100%), with 73.8% localization accuracy for an independent test set. In conclusion, the Cancer Serum Atlas provides a wide range of potential biomarkers that serve as targets and standard assays for systematic and highly efficient serological studies of cancer. The Cancer Serum Atlas-supported pan-targeted proteomic strategy enables highly efficient biomarker discovery and multicancer detection and thus can be a powerful tool for liquid biopsy.
Collapse
Affiliation(s)
- Anqi Hu
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Zhenxin Wang
- Department of Laboratory Medicine of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunyan Yuan
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Xia Gao
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Xuguang Chen
- Informatization Office, Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Laboratory Medicine of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| | - Huali Shen
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
22
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
An W, Tian F, Li J, Chen J, Tong Y. N-glycoproteomic profiling revealing novel coronavirus therapeutic targets potentially involved in Cepharanthine's intervention. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 16:100156. [PMID: 35879945 PMCID: PMC9301903 DOI: 10.1016/j.medntd.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wenlin An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 JingHai Second Road, Beijing, 101111, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Junge Chen
- Beihang-Aeonmed Joint Laboratory for Respiratory System and Related Disease Diagnosis and Treatment Technology, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 10083, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| |
Collapse
|
24
|
Sui X, Wu Q, Cui X, Wang X, Zhang L, Deng N, Bian Y, Xu R, Tian R. Robust Capillary- and Micro-Flow Liquid Chromatography-Tandem Mass Spectrometry Methods for High-Throughput Proteome Profiling. J Proteome Res 2022; 21:2472-2480. [PMID: 36040778 DOI: 10.1021/acs.jproteome.2c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary- and micro-flow liquid chromatography-tandem mass spectrometry (capLC-MS/MS and μLC-MS/MS) is becoming a valuable alternative to nano-flow LC-MS/MS due to its high robustness and throughput. The systematic comparison of capLC-MS/MS and μLC-MS/MS systems for global proteome profiling has not been reported yet. Here, the capLC-MS/MS (150 μm i.d. column, 1 μL/min) and μLC-MS/MS (1 mm i.d. column, 50 μL/min) systems were both established based on UltiMate 3000 RSLCnano coupled to an Orbitrap Exploris 240 by integrating with different flowmeters. We evaluated both systems in terms of sensitivity, analysis throughput, separation efficiency, and robustness. capLC-MS/MS was about 10 times more sensitive than μLC-MS/MS at different gradient lengths. Compared with capLC-MS/MS, μLC-MS/MS was able to achieve higher analysis throughput and separation efficiency. During the 7 days' long-term performance test, both systems showed good reproducibility of chromatographic full width (RSD < 3%), retention time (RSD < 0.4%), and protein identification (RSD < 3%). These results demonstrate that capLC-MS/MS is more suitable for high-throughput analysis of clinical samples with a limited starting material. When enough samples are available, μLC-MS/MS is preferred. Together, capLC and μLC coupled to Orbitrap Exploris 240 with moderate sensitivity should well meet the needs of large-cohort clinical proteomic analysis.
Collapse
Affiliation(s)
- Xintong Sui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaozhen Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Bian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
26
|
Mendes ML, Dittmar G. Targeted proteomics on its way to discovery. Proteomics 2022; 22:e2100330. [PMID: 35816345 DOI: 10.1002/pmic.202100330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
For a long time, targeted and discovery proteomics covered different corners of the detection spectrum, with targeted proteomics focused on small target sets. This changed with the recent advances in highly multiplexed analysis. While discovery proteomics still pushes higher numbers of identified and quantified proteins, the advances in targeted proteomics rose to cover large parts of less complex proteomes or proteomes with low protein detection counts due to dynamic range restrictions, like the blood proteome. These new developments will impact, especially on the field of biomarker discovery and the possibility of using targeted proteomics for diagnostic purposes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of cellular signalling, Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| |
Collapse
|
27
|
Safety and Efficacy of the Bordetella bronchiseptica Vaccine Combined with a Vegetable Oil Adjuvant and Multi-Omics Analysis of Its Potential Role in the Protective Response of Rabbits. Pharmaceutics 2022; 14:pharmaceutics14071434. [PMID: 35890330 PMCID: PMC9317422 DOI: 10.3390/pharmaceutics14071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.
Collapse
|
28
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Fritted tip capillary column with negligible dead volume facilitated ultrasensitive and deep proteomics. Anal Chim Acta 2022; 1201:339615. [DOI: 10.1016/j.aca.2022.339615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
30
|
Brzhozovskiy A, Kononikhin A, Bugrova AE, Kovalev GI, Schmit PO, Kruppa G, Nikolaev EN, Borchers CH. The Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Anal Chem 2022; 94:2016-2022. [PMID: 35040635 DOI: 10.1021/acs.analchem.1c03782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS)-based quantitative proteomic methods have become some of the major tools for protein biomarker discovery and validation. The recently developed parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach on a Bruker timsTOF Pro mass spectrometer allows the addition of ion mobility as a new dimension to LC-MS-based proteomics and increases proteome coverage at a reduced analysis time. In this study, a prm-PASEF approach was used for the multiplexed absolute quantitation of proteins in human plasma using isotope-labeled peptide standards for 125 plasma proteins, over a broad (104-106) dynamic range. Optimization of LC and MS parameters, such as accumulation time and collision energy, resulted in improved sensitivity for more than half of the targets (73 out of 125 peptides) by increasing the signal-to-noise ratio by a factor of up to 10. Overall, 41 peptides showed up to a 2-fold increase in sensitivity, 25 peptides showed up to a 5-fold increase in sensitivity, and 7 peptides showed up to a 10-fold increase in sensitivity. Implementation of the prm-PASEF method allowed absolute protein quantitation (down to 1.13 fmol) in human plasma samples. A comparison of the concentration values of plasma proteins determined by MRM on a QTRAP instrument and by prm-PASEF on a timsTOF Pro revealed an excellent correlation (R2 = 0.97) with a slope of close to 1 (0.99), demonstrating that prm-PASEF is well suited for "absolute" quantitative proteomics.
Collapse
Affiliation(s)
- Alexander Brzhozovskiy
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexey Kononikhin
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna E Bugrova
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Grigoriy I Kovalev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Gary Kruppa
- Bruker Daltonics, Inc. Billerica, Massachusetts 018215, United States
| | - Evgeny N Nikolaev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
31
|
Mi S, Jiang H, Zhang L, Xie Z, Zhou J, Sun A, Jin H, Ge J. Regulation of Cardiac-Specific Proteins Expression by Moderate-Intensity Aerobic Exercise Training in Mice With Myocardial Infarction Induced Heart Failure Using MS-Based Proteomics. Front Cardiovasc Med 2021; 8:732076. [PMID: 34692783 PMCID: PMC8531249 DOI: 10.3389/fcvm.2021.732076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
This study aims to systematically reveal the changes in protein levels induced by regular exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid chromatography-mass spectrometry method to identify and quantify the protein profile in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated; 707 proteins down-regulated) were differentially expressed between the exercise group and the sedentary group, including numerous proteins related to energy metabolism. The significant alteration of the component (E1 component subunit alpha and subunit beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose] polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic insight of the influence of aerobic exercise on HF.
Collapse
Affiliation(s)
- Shouling Mi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hong Jin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Stomatological Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhu H, Ficarro SB, Alexander WM, Fleming LE, Adelmant G, Zhang T, Willetts M, Decker J, Brehmer S, Krause M, East MP, Gray NS, Johnson GL, Kruppa G, Marto JA. PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. Anal Chem 2021; 93:13791-13799. [PMID: 34606255 DOI: 10.1021/acs.analchem.1c02349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.
Collapse
Affiliation(s)
- He Zhu
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - William M Alexander
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura E Fleming
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tinghu Zhang
- Department of Chemical & Systems Biology and ChEM-H, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthew Willetts
- Bruker Daltonics Inc, Billerica, Massachusetts 01821, United States
| | - Jens Decker
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Sven Brehmer
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | | | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Nathanael S Gray
- Department of Chemical & Systems Biology and ChEM-H, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary Kruppa
- Bruker S.R.O., District Brno-City 61900, Czech Republic
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| |
Collapse
|
33
|
van Bentum M, Selbach M. An Introduction to Advanced Targeted Acquisition Methods. Mol Cell Proteomics 2021; 20:100165. [PMID: 34673283 PMCID: PMC8600983 DOI: 10.1016/j.mcpro.2021.100165] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Targeted proteomics via selected reaction monitoring (SRM) or parallel reaction monitoring (PRM) enables fast and sensitive detection of a preselected set of target peptides. However, the number of peptides that can be monitored in conventional targeting methods is usually rather small. Recently, a series of methods has been described that employ intelligent acquisition strategies to increase the efficiency of mass spectrometers to detect target peptides. These methods are based on one of two strategies. First, retention time adjustment-based methods enable intelligent scheduling of target peptide retention times. These include Picky, iRT, as well as spike-in free real-time adjustment methods such as MaxQuant.Live. Second, in spike-in triggered acquisition methods such as SureQuant, Pseudo-PRM, TOMAHAQ, and Scout-MRM, targeted scans are initiated by abundant labeled synthetic peptides added to samples before the run. Both strategies enable the mass spectrometer to better focus data acquisition time on target peptides. This either enables more sensitive detection or a higher number of targets per run. Here, we provide an overview of available advanced targeting methods and highlight their intrinsic strengths and weaknesses and compatibility with specific experimental setups. Our goal is to provide a basic introduction to advanced targeting methods for people starting to work in this field.
Collapse
Affiliation(s)
- Mirjam van Bentum
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
34
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Meier F, Park MA, Mann M. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Mol Cell Proteomics 2021; 20:100138. [PMID: 34416385 PMCID: PMC8453224 DOI: 10.1016/j.mcpro.2021.100138] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in efficiency and ease of implementation have rekindled interest in ion mobility spectrometry, a technique that separates gas phase ions by their size and shape and that can be hybridized with conventional LC and MS. Here, we review the recent development of trapped ion mobility spectrometry (TIMS) coupled to TOF mass analysis. In particular, the parallel accumulation-serial fragmentation (PASEF) operation mode offers unique advantages in terms of sequencing speed and sensitivity. Its defining feature is that it synchronizes the release of ions from the TIMS device with the downstream selection of precursors for fragmentation in a TIMS quadrupole TOF configuration. As ions are compressed into narrow ion mobility peaks, the number of peptide fragment ion spectra obtained in data-dependent or targeted analyses can be increased by an order of magnitude without compromising sensitivity. Taking advantage of the correlation between ion mobility and mass, the PASEF principle also multiplies the efficiency of data-independent acquisition. This makes the technology well suited for rapid proteome profiling, an increasingly important attribute in clinical proteomics, as well as for ultrasensitive measurements down to single cells. The speed and accuracy of TIMS and PASEF also enable precise measurements of collisional cross section values at the scale of more than a million data points and the development of neural networks capable of predicting them based only on peptide sequences. Peptide collisional cross section values can differ for isobaric sequences or positional isomers of post-translational modifications. This additional information may be leveraged in real time to direct data acquisition or in postprocessing to increase confidence in peptide identifications. These developments make TIMS quadrupole TOF PASEF a powerful and expandable platform for proteomics and beyond.
Collapse
Affiliation(s)
- Florian Meier
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Functional Proteomics, Jena University Hospital, Jena, Germany.
| | - Melvin A Park
- Bruker Daltonics Inc, Billerica, Massachusetts, USA.
| | - Matthias Mann
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
36
|
Li J, Pan H, Yang H, Wang C, Liu H, Zhou H, Li P, Li C, Lu X, Tian Y. Rhamnolipid Enhances the Nitrogen Fixation Activity of Azotobacter chroococcum by Influencing Lysine Succinylation. Front Microbiol 2021; 12:697963. [PMID: 34394039 PMCID: PMC8360865 DOI: 10.3389/fmicb.2021.697963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The enhancement of nitrogen fixation activity of diazotrophs is essential for safe crop production. Lysine succinylation (KSuc) is widely present in eukaryotes and prokaryotes and regulates various biological process. However, knowledge of the extent of KSuc in nitrogen fixation of Azotobacter chroococcum is scarce. In this study, we found that 250 mg/l of rhamnolipid (RL) significantly increased the nitrogen fixation activity of A. chroococcum by 39%, as compared with the control. Real-time quantitative reverse transcription PCR (qRT-PCR) confirmed that RL could remarkably increase the transcript levels of nifA and nifHDK genes. In addition, a global KSuc of A. chroococcum was profiled using a 4D label-free quantitative proteomic approach. In total, 5,008 KSuc sites were identified on 1,376 succinylated proteins. Bioinformatics analysis showed that the addition of RL influence on the KSuc level, and the succinylated proteins were involved in various metabolic processes, particularly enriched in oxidative phosphorylation, tricarboxylic acid cycle (TCA) cycle, and nitrogen metabolism. Meanwhile, multiple succinylation sites on MoFe protein (NifDK) may influence nitrogenase activity. These results would provide an experimental basis for the regulation of biological nitrogen fixation with KSuc and shed new light on the mechanistic study of nitrogen fixation.
Collapse
Affiliation(s)
- Jin Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
37
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
38
|
Sá JDO, Trino LD, Oliveira AK, Lopes AFB, Granato DC, Normando AGC, Santos ES, Neves LX, Carnielli CM, Paes Leme AF. Proteomic approaches to assist in diagnosis and prognosis of oral cancer. Expert Rev Proteomics 2021; 18:261-284. [PMID: 33945368 DOI: 10.1080/14789450.2021.1924685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Oral squamous cell carcinoma (OSCC) ranks among the top 10 leading causes of cancer worldwide, with 5-year survival rate of about 50%, high lymph node metastasis, and relapse rates. The OSCC diagnosis, prognosis, and treatment are mostly based on the clinical TNM classification. There is an urgent need for the discovery of biomarkers and therapeutic targets to assist in the clinical decision-making process.Areas covered: We summarize proteomic studies of the OSCC tumor, immune microenvironment, potential liquid biopsy sites, and post-translational modifications trying to retrieve information in the discovery and verification or (pre)validation phases. The search strategy was based on the combination of MeSH terms and expert refinement.Expert opinion: Untargeted combined with targeted proteomics are strategies that provide reliable and reproducible quantitation of proteins and are the methods of choice of many groups worldwide. Undoubtedly, proteomics has been contributing to the understanding of OSCC progression and uncovers potential candidates as biomarker or therapeutic targets. Nevertheless, none of these targets are available in the clinical practice yet. The scientific community needs to overcome the limitations by investing in robust experimental designs to strengthen the value of the findings, leveraging the translation of knowledge, and further supporting clinical decisions.
Collapse
Affiliation(s)
- Jamile De Oliveira Sá
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Luciana Daniele Trino
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ariane Fidelis Busso Lopes
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Gabriela Costa Normando
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Erison Santana Santos
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Leandro Xavier Neves
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| |
Collapse
|
39
|
Abstract
INTRODUCTION The continuous technical improvement in sensitivity and specificity placed mass spectrometry as an alternative method for analyzing clinical samples. In parallel to the rapid development of discovery proteomics, targeted acquisition has been implemented as a complementary option for measuring a small set of proteins with high sensitivity and robustness in a large sample cohort. The combination of trapped ion mobility with a rapid time-of-flight (TOF) mass spectrometer improves the sensitivity even further and triggers the development of prm-PASEF. AREAS COVERED This article discusses the development of prm-PASEF and its advantages over the existing targeted and discovery methods for analyzing clinical samples. We are also highlighting the different requirements for the use of prm-PASEF on clinical samples. EXPERT OPINION prm-PASEF takes advantage of a dual ion-mobility trap enabling highly multiplexed targeted acquisition. It allows the implementation of a short chromatographic separation setup without sacrificing the number of targeted peptides. Analyzing clinical samples by prm-PASEF holds the promise to significantly improve throughput while maintaining sensitivity to detect the selected target proteins.
Collapse
Affiliation(s)
- Antoine Lesur
- Head of the Proteomics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Co-Head of the Quantitative Biology Unit, Proteomics of Cellular Signaling Research Group Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|