1
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Ye Z, Ma M, Chen Y, Yang J, Zhao C, Diao Q, Ma P, Song D. Early Diagnosis of Triple-Negative Breast Cancer Based on Dual microRNA Detection Using a Well-Defined DNA Crown-Carbon Dots Structure as an Electrochemiluminescence Sensing Platform. Anal Chem 2024; 96:17984-17992. [PMID: 39480061 DOI: 10.1021/acs.analchem.4c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Thus, early detection and accurate diagnosis of this cancer are crucial for improving the survival rate of patients. Specific microRNAs (miRNAs) have been implicated in the occurrence, proliferation, and metastasis of TNBC. Addressing this need, our study developed a biosensor platform for early and accurate TNBC diagnosis by integrating electrochemiluminescence (ECL) technology with a DNA sensing strategy. Specifically, synthesized positively charged carbon dots (CDs) were used to neutralize the electrostatic repulsion between DNA strands and facilitate the assembly of DNA triangular prisms (DNA TP-CDs). Hairpins were then incorporated into the DNA TP-CDs to form the final DNA crown structure. The early TNBC biomarker, microRNA-93-3p (miR-93-3p), allowed for the binding between the DNA Crown and the DNA track on the electrode and initiated the ECL signal. Subsequently, microRNA-210 (miR-210) unlocked the DNA tripedal walker, and its movement on the DNA Crown eventually quenched the ECL signal, enabling accurate TNBC diagnosis and tumor stage assessment. Our proposed biosensor had satisfactory sensing efficiency due to the ordered DNA track and rapid-moving DNA walker. The data revealed a good linear relationship between the ECL signals and the logarithm of miRNA concentrations, with miR-93-3p having a detection limit of 31.04 aM and miR-210 having a detection limit of 7.69 aM. The biosensor also showed satisfactory performance in serum samples and cells. Taken together, this study hopes to provide ideas and applications for clinical diagnosis as well as the personalized treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| |
Collapse
|
3
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
4
|
Yu X, Ding S, Zhao Y, Xu M, Wu Z, Zhao C. A highly sensitive and robust electrochemical biosensor for microRNA detection based on PNA-DNA hetero-three-way junction formation and target-recycling catalytic hairpin assembly amplification. Talanta 2024; 266:125020. [PMID: 37541007 DOI: 10.1016/j.talanta.2023.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Robust and sensitive methods for the detection of microRNAs (miRNAs) are crucial in the clinical diagnosis of cancers. In this study, a novel electrochemical biosensor with high sensitivity for miRNA-21 detection is developed, which relies on the formation of a peptide nucleic acid (PNA)-DNA hetero-three-way junction (H3WJ) and target-recycling catalytic hairpin assembly (CHA) amplification. The electroneutral PNA probes are initially immobilized onto a gold electrode to construct the sensor. Upon introduction of miRNA-21, target-recycling CHA is initiated, resulting in abundant double-stranded CHA products. Subsequently, association between the PNA probes and these products leads to the formation of PNA-DNA H3WJs. Consequently, the electrode surface is densely populated with numerous electroactive Ferrocene (Fc) groups, resulting in a significantly amplified current response for highly sensitive detection of miRNA-21 at concentrations as low as 0.15 fM. This approach demonstrates remarkable specificity towards target miRNAs and can be utilized for quantitative monitoring of miRNA-21 expression in human cancer cells. More importantly, the sensor exhibits exceptional stability and shows a significant reduction in background noise during miRNA detection, making this method a highly promising sensing platform for monitoring various miRNA biomarkers to facilitate the diagnosis of diverse cancers.
Collapse
Affiliation(s)
- Xiaomeng Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Shuyu Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315300, PR China
| | - Mengjia Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, 315300, Zhejiang, PR China
| | - Zimiao Wu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, 315300, Zhejiang, PR China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Wu Y, Yi R, Zang H, Li J, Xu R, Zhao F, Wang J, Fu C, Chen J. A ratiometric SERS sensor with one signal probe for ultrasensitive and quantitative monitoring of serum xanthine. Analyst 2023; 148:5707-5713. [PMID: 37830373 DOI: 10.1039/d3an01245j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Xanthine can be converted into uric acid, and a high concentration of xanthine in the human body can cause many diseases. Therefore, it is important to develop a sensitive, simple, and reliable approach for measuring xanthine in biological liquids. Hence, a ratiometric surface-enhanced Raman spectroscopy (SERS) sensing strategy with one signal probe was exploited for reliable, sensitive, and quantitative monitoring of serum xanthine. 3-Mercaptophenylboronic acid (3-MPBA) was used as a typical reference with a Raman peak at 996 cm-1. First, 3-MPBA was bound to gold nanoflowers@silica (GNFs@Si) through Au-S bonds. Xanthine oxidase (XOD) catalyzed the oxidation of xanthine into H2O2 on GNFs@Si. Afterward, the obtained H2O2 further reduced 3-MPBA to 3-hydroxythiophenol (3-HTP) accompanied by the emergence of a new Raman peak at 883 cm-1. Meanwhile, the Raman intensity at 996 cm-1 remained constant. Therefore, the ratio of I883/I996 increased with the increasing of xanthine concentration, thus realizing quantitative detection of xanthine. As a result, a ratiometric SERS sensor for the detection of xanthine was proposed with a detection limit of 5.7 nM for xanthine. The novel ratiometric SERS sensor provides a new direction for analyzing other biomolecules with high sensitivity and reliability.
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China
| | - Rongnan Yi
- Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China
| | - Honghui Zang
- Chongqing Wankai New Materials Technology Co., Ltd, Fuling, Chongqing 408121, China
| | - Jing Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Rong Xu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Fang Zhao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Junli Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| |
Collapse
|
6
|
Qian Q, Tang Y, Miao P. Quantification of Multiplex miRNAs by Mass Spectrometry with Duplex-Specific Nuclease-Mediated Amplification. Anal Chem 2023; 95:11578-11582. [PMID: 37498281 DOI: 10.1021/acs.analchem.3c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Early quantification of multiplex biomarkers such as microRNAs (miRNAs) is critical during disease pathologic development and therapy. To tackle challenges of low abundance and multiplexing, we herein report a mass-encoded biosensing approach with duplex-specific nuclease (DSN) mediated signal amplification. Magnetic Fe3O4 cores are coated with small gold nanoparticles (AuNPs), which are applied to achieve facile DNA immobilization subsequent separation. This biosensor integrates multiple mass reporters corresponding to different targets (five miRNAs as examples). Due to the excellent resolution of mass spectrometry, these targets can be successfully distinguished in a single spectrum. Wide detection ranges from 10 fM to 1 nM are achieved, and the limits of detection are estimated to be 10 fM. High selectivity is promised due to the enzyme activity of DSN, and practical application in human serum samples performs satisfactorily. The number of targets to be tested can be further expanded by designing different specific mass tags in theory. Therefore, the proposed method can be utilized as an important and valuable tool to quantify multiplex miRNAs for disease screening as well as biomedical investigations.
Collapse
Affiliation(s)
- Qing Qian
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
7
|
A novel detection of MicroRNA based on homogeneous electrochemical sensor with enzyme-assisted signal amplification. Talanta 2023; 256:124263. [PMID: 36681037 DOI: 10.1016/j.talanta.2023.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Rapid and sensitive detection of microRNAs is of great importance in biological researches and cancer diagnosis. Herein, we proposed a novel homogeneous electrochemical sensor to detect microRNA-21 (miRNA-21) using functionalized magnetic nanoparticles combined with enzyme-assisted signal amplification. The biotinylated capture probe (CP) labeled magnetic nanoparticles can capture miRNA-21 and introduce streptavidin-conjugated hydroxyapatite (HAP) nanoparticles. In the presence of miRNA-21, hybridization between RNA and DNA results in the formation of RNA/DNA duplexes, and then duplex-specific nuclease (DSN) cleave the duplexes to digest the capture chain and release the miRNA-21 in a loop. Meanwhile, the HAP nanoparticles strip from the magnetic nanoparticles and electrochemical signal by the reaction of HAP with molybdate is changed. The current variation before and after incubation with miRNA-21 is linearly correlated with the miRNA-21 concentration between 1 aM and 1 pM with a low detection limit (LOD) of 0.27 aM. Remarkably, the expression of miRNA-21 in human serum and different cell lysate was successfully performed, which fully demonstrates the great practical potentials in biomedical diagnostics and clinical therapeutics.
Collapse
|
8
|
Huang W, Yang C, Gao J, Ye J, Yuan R, Xu W. Cooperative Amplification of Au@FeCo as Mimetic Catalytic Nanozymes and Bicycled Hairpin Assembly for Ultrasensitive Electrochemical Biosensing. Anal Chem 2023; 95:5710-5718. [PMID: 36941819 DOI: 10.1021/acs.analchem.2c05725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Exploring the cooperative amplification of peroxidase-like metal nanocomposites and cycled hairpin assembly is intriguing for sensitive bioanalysis. Herein, we report the first design of a unique electrochemical biosensor based on mimicking Au@FeCo nanozymes and bicycled hairpin assembly (BHA) for synergistic signal amplification. By loading the enzyme-like FeCo alloy in Au nanoparticles (AuNPs), the as-synthesized Au@FeCo hybrids display great improvement of electronic conductivity and active surface area and excellent mimic catalase activity to H2O2 decomposition into •OH radicals. The immobilization of Au@FeCo in an electrode sensing interface is stabilized via the resulting electrodeposition in HAuCl4 while efficiently accelerating the electron transfer of electroactive ferrocene (Fc). Upon the immobilization of a helping hairpin (HH) via Au-S bonds, a specific DNA trigger (T*) is introduced to activate BHA operation through competitive strand displacement reactions among recognizing hairpin (RH), signaling hairpin (SH), and HH. T* and RH are rationally released to catalyze two cycles, in which the transient depletion of dsDNA intermediates rapidly drives the progressive hairpin assemblies to output more products SH·HH. Thus, the efficient amplification of Au@FeCo mimic catalase activity combined with BHA leads to a significantly increased current signal of Fc dependent on miRNA-21 analogous to T*, thereby directing the creation of a highly sensitive electrochemical biosensor having applicable potential in actual samples.
Collapse
Affiliation(s)
- Weixiang Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jingjing Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Gao YP, Huang KJ, Wang FT, Hou YY, Zhao LD, Wang BY, Xu J, Shuai H, Li G. The self-powered electrochemical biosensing platform with multi-amplification strategy for ultrasensitive detection of microRNA-155. Anal Chim Acta 2023; 1239:340702. [PMID: 36628768 DOI: 10.1016/j.aca.2022.340702] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 μA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 μA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.
Collapse
Affiliation(s)
- Yong-Ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China; School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Ke-Jing Huang
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi Minzu University, Nanning, 530008, PR China.
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu-di Zhao
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Bo-Ya Wang
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Honglei Shuai
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
10
|
Zhao X, Yang J, Deng W, Tan Y, Xie Q. Construction of a high power-density microbial fuel cell based on lipopolysaccharide-lectin interactions and its application for detecting heavy metal toxicity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Li H, Zhang H, Luo W, Yuan R, Zhao Y, Huang JA, Yang X. Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of MicroRNA. Anal Chim Acta 2022; 1229:340380. [PMID: 36156226 DOI: 10.1016/j.aca.2022.340380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
The rigidity of traditional solid-state surface-enhanced Raman spectroscopy (SERS) substrate hampers their application in the curved structure for nonplanar surface test and in-situ detection. Traditionally, the flexible Raman substrates are often prepared by transferring printing of patterned nanoparticles on the flexible materials such as polymer, paper, etc. However,the replicate patterns are often produced by high-cost instruments. In this study, a low-cost and flexible SERS substrate is prepared by using a microcontact printing technology to transfer three-phase-assembled nanoparticles on a polydimethylsiloxane film, which can stabilize the assembled nanoparticles. Combining with the endonuclease Nt.BbvCI assisted amplification method, a SERS biosensor is constructed for microRNA 21 (miRNA 21) assay. This platform presents a wide dynamic range (100 fM ∼1 nM), achieving a fabulous sensitivity with limit of detection of 11.96 fM for miRNA 21. Furthermore, after being bent 90° for 50 times, the Raman intensity of the flexible substrate shows a negligible change. This versatile flexible substrate exhibits considerable potential for SERS analysis, which also opens a new avenue for preparing flexible devices.
Collapse
Affiliation(s)
- Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Haina Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Yingqi Zhao
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
12
|
Luo W, Hu Y, Zhang H, Yuan R, Yang X. Oriented interfacial self-assembled SERS platform with dual nucleic acid amplification for detection of MiRNA 21. Anal Chim Acta 2022; 1224:340221. [DOI: 10.1016/j.aca.2022.340221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/01/2022]
|
13
|
Li K, Li H, Yin M, Yang D, Xiao F, Kumar Tammina S, Yang Y. Fluorescence-SERS dual-mode for sensing histamine on specific binding histamine-derivative and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121047. [PMID: 35217264 DOI: 10.1016/j.saa.2022.121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Histamine (His) is used as an indicator of seafood quality, but it can be toxic at high intakes. A fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode assay system has been developed for His detection. The His detection method was established based on the specific binding capacity of gold nanoparticles (AuNPs) for the FL derivative of His and o-phthalaldehyde (OPA). In this strategy, His reacted with the OPA to form a Schiff base product (O-His) along with a change in FL and SERS activities. The usual nature of AuNPs could display a significant role both enhancement of SERS and quenching of FL signals. The current investigation displayed a good selectivity toward His over all other biogenic amines. Under the optimized analytical conditions, the SERS and FL intensity of the system were linearly proportional to the His concentration in the range of 0.05-4.5 mg/L and 1-20 mg/L with a detection limit of 0.04 mg/L and 0.32 mg/L, respectively. Moreover, the proposed method was successfully applied for His determination in seafood with promising results.
Collapse
Affiliation(s)
- Kexiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Institute of Agro-products Processing, Yunnan Academy of Agricultural Science, Yunnan Province 650032, China
| | - Mongjia Yin
- Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China.
| | - Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Sai Kumar Tammina
- School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
14
|
Xu W, Zhang Y, Chen H, Dong J, Khan R, Shen J, Liu H. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21. Anal Bioanal Chem 2022; 414:4079-4088. [PMID: 35419693 DOI: 10.1007/s00216-022-04053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Here, we developed a surface-enhanced Raman scattering (SERS) sensor based on functionalized Au@Ag core-shell nanorods (Au@Ag NRs) and cascade DNAzyme amplifier (CSA) for sensitive and accurate determination of microRNA-21 (miRNA-21). The as-prepared SERS nanoprobes were composed of a thiol-modification hairpin probe (HP2)-functionalized Au@Ag NRs and hairpin DNAzyme (HP1-Dz). Compared with original gold nanorods, the silver shell caused an enhancement of plasmonic properties, resulting in a significant enhancement of Raman signals. In the presence of target miRNAs, the hairpin construction of HP1-Dz changed due to DNA/RNA hybridization; subsequently, the DNAzyme-catalyzed cleaving process changed, and the Raman signals of the SERS nanoprobes gradually "turned off" with time elapse because of the dissociation of the Raman reporter from the surface of Au@Ag NRs. Hence, based on this principle, the proposed SERS sensor exhibited good linearity in the range 0.5 fM to 10 nM for miRNA-21 detection with a detection limit (LOD) of 0.5 fM. The proposed SERS platform has potential application in quantitative and precise detection of miRNA-21 in human serum.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Yu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Ranjha Khan
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jianjun Shen
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Honglin Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Li CH, Lv WY, Yang FF, Zhen SJ, Huang CZ. Simultaneous Imaging of Dual microRNAs in Cancer Cells through Catalytic Hairpin Assembly on a DNA Tetrahedron. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12059-12067. [PMID: 35213135 DOI: 10.1021/acsami.1c23227] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection and imaging of tumor-related microRNA (miRNA) in living cells hold great promise for early cancer diagnosis and prognosis. One of the challenges is to develop methods that enable the identification of multiple miRNAs simultaneously to further improve the detection accuracy. Herein, a simultaneous detection and imaging method of two miRNAs was established by using a programmable designed DNA tetrahedron nanostructure (DTN) probe that includes a nucleolin aptamer (AS1411), two miRNA capture strands, and two pairs of metastable catalytic hairpins at different vertexes. The DTN probe exhibited enhanced tumor cell recognition ability, excellent stability and biocompatibility, and fast miRNA recognition and reaction kinetics. It was found that the DTN probe could specifically enter tumor cells, in which the capture strand could hybridize with miRNAs and initiate the catalytic hairpin assembly (CHA) only when the overexpressed miR-21 and miR-155 existed simultaneously, resulting in a distinct fluorescence resonance energy transfer signal and demonstrating the feasibility of this method for tumor diagnosis.
Collapse
Affiliation(s)
- Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
16
|
Fan G, Gao X, Xu S, Li X, Zhang Q, Dai C, Xue Q, Wang H. Engineering an Au nanostar-based liquid phase interfacial ratiometric SERS platform with programmable entropy-driven DNA circuits to detect protein biomarkers in clinical samples. Chem Commun (Camb) 2021; 58:407-410. [PMID: 34897319 DOI: 10.1039/d1cc05975k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing sensing platforms that simultaneously integrate high sensitivity and accuracy has been a promising but challenging task for the detection of protein biomarkers in clinical samples. Herein, we engineered an Au nanostar-based liquid phase interfacial ratiometric SERS platform with programmable entropy-driven DNA circuits to detect the protein biomarker Mucin 1 (MUC1) in clinical samples.
Collapse
Affiliation(s)
- Guanli Fan
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiaorong Gao
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Shuling Xu
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Qi Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan 250012, Shandong, P. R. China.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
17
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Song C, Zhang J, Jiang X, Gan H, Zhu Y, Peng Q, Fang X, Guo Y, Wang L. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosens Bioelectron 2021; 190:113376. [PMID: 34098358 DOI: 10.1016/j.bios.2021.113376] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive and reliable detection of disease-related nucleic acids is still a big challenge in liquid biopsy because of their homologous sequences and low abundance. Herein, a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic biosensor based on catalytic hairpin assembly (CHA)-induced Au nanoparticle (AuNP) network was proposed for highly sensitive and reliable detection of cancer-related miRNA-652. The biosensor includes capture DNA-functionalized AuNPs (Probe 1), H1 and 4-mercaptobenzoic acid (4-MBA) co-modified AuNPs (Probe 2), and 6-carboxyl-Xrhodamine (ROX)-labeled H2 (fuel strands). The Probe 1-Probe 2 networks were formed via the target-triggered CHA reactions, which resulted in the color change of dark-field microscopy (DFM) images and enhanced SERS effect. The SPR sensing was achieved by extracting the integral optical density of dark-field color in DFM images, and the SERS sensing was realized by the ratiometric SERS signals of ROX and internal standards 4-MBA molecules. After characterizing the feasibility and optimality of the sensing strategy, the good performance of biosensors on sensitivity, specificity and uniformity was approved. The practicability of biosensors was confirmed by detecting miRNA-652 in human serum, and both the SPR and SERS assays showed good linear calibration curves and low limit of detections (LODs) of 42.5 fM and 2.91 fM, respectively, with the recovery in the range of 94.67-111.4%. These two modes show complementary advantages, and the combined SPR/SERS dual-mode can provide more options for detection and double check the results to improve the accuracy and reliability of assays, which holds a great application prospect for cancer-related nucleic acids detection in early disease stage.
Collapse
Affiliation(s)
- Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyu Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan Guo
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
19
|
Wu CJ, Huang SQ, Wang YY, Chai YQ, Yuan R, Yang X. DNA Structure-Stabilized Liquid-Liquid Self-Assembled Ordered Au Nanoparticle Interface for Sensitive Detection of MiRNA 155. Anal Chem 2021; 93:11019-11024. [PMID: 34324804 DOI: 10.1021/acs.analchem.1c02336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Au nanoparticles (Au NPs) can be self-assembled in a bottom-up orderly manner at the oil-water interface, which is widely used as SERS platforms, but the stability of the Au NP interface needs to be improved due to shaking or shifting and the Brownian motion. The DNA structure with unique sequence specificity, excellent programmability, and flexible end-group modification capability owns good potential to precisely control the plasmonic structure's distance. In this study, a large area of the SERS substrate is obtained from the DNA structure-stabilized self-assembled ordered Au NPs on the cyclohexane-water interface. Combining with the exonuclease III (exo III)-assisted DNA recycling amplification strategy, we construct a liquid-phase SERS biosensor for efficient detection of microRNA 155 (miRNA 155). Compared with the traditional randomly assembled Au NPs on the two-phase interface, the SERS signal is significantly enhanced and more stable. The detection limit of the SERS biosensor for miRNA 155 reached 1.45 fmol/L, which has a very wide linear range (100 fmol/L-5 nmol/L). This work gives an efficient approach to stabilize the self-assembly Au NPs on the liquid-liquid interface, which can broaden the application of SERS analysis.
Collapse
Affiliation(s)
- Cai-Jun Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Si-Qi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu-Ying Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
20
|
Meng S, Chen R, Xie J, Li J, Cheng J, Xu Y, Cao H, Wu X, Zhang Q, Wang H. Surface-enhanced Raman scattering holography chip for rapid, sensitive and multiplexed detection of human breast cancer-associated MicroRNAs in clinical samples. Biosens Bioelectron 2021; 190:113470. [PMID: 34229191 DOI: 10.1016/j.bios.2021.113470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the early diagnosis of breast cancer. Yet, simultaneous achievement of rapid, sensitive and accurate detection of diverse miRNAs in clinical samples is still challenging due to the low abundance of miRNAs and the complex procedures of RNA extraction and separation. Herein, we develop an innovative three-dimensional (3D) surface-enhanced Raman scattering (SERS) holography sensing strategy for rapid, sensitive and multiplexed detection of human breast cancer-associated miRNAs. To establish a proof of concept, nine kinds of human breast cancer-associated miRNAs are isothermally amplified by Exonuclease (Exo) III enzyme, and the products could be spatially separated to corresponding sensing region on silicon SERS substrates. Each region has been modified with corresponding hairpin DNA probes, which are used to identify and quantify the miRNAs. Different DNA probes are labeled with different Raman reporters, which serve as "SERS tags" to incorporate spectroscopic information into computer-generated 3D SERS hologram within ~9 min. We demonstrate that 3D SERS holography chip not only achieves an ultrahigh sensitivity down to ~1 aM but also feature a high correlation with RT-qPCR in the detection of nine miRNAs in 30 clinical serum samples. This work provides a feasible tool to improve the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Sifan Meng
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jingxuan Xie
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jing Li
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiayi Cheng
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanan Xu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haiting Cao
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaofeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
21
|
Zhou H, Zhang J, Li B, Liu J, Xu JJ, Chen HY. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal Chem 2021; 93:6120-6127. [PMID: 33821629 DOI: 10.1021/acs.analchem.0c05221] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jishou Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Ye Z, Li C, Chen Q, Xu Y, Bell SEJ. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. NANOSCALE 2021; 13:5937-5953. [PMID: 33650605 DOI: 10.1039/d0nr08803j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded. Similarly, it is useful to transform liquid plasmonic arrays into easy-to-handle free-standing solid films but these can only be used as solid SERS substrates if the process leaves the surface nanoparticles exposed. Here, we review the progress made in these research areas and discuss how these developments may lead towards achieving rational construction of tailored SERS substrates for sensitive and quantitative SERS analysis.
Collapse
Affiliation(s)
- Ziwei Ye
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| | | | | | | | | |
Collapse
|
23
|
Yi R, Wu Y. Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|