1
|
Chen J, Lou Y, Liu Y, Deng B, Zhu Z, Yang S, Chen D. Advances in Chromatographic and Mass Spectrometric Techniques for Analyzing Reducing Monosaccharides and Their Phosphates in Biological Samples. Crit Rev Anal Chem 2024:1-23. [PMID: 38855933 DOI: 10.1080/10408347.2024.2364232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Reducing monosaccharides and their phosphates are critical metabolites in the central carbon metabolism pathway of living organisms. Variations in their content can indicate abnormalities in metabolic pathways and the onset of certain diseases, necessitating their analysis and detection. Reducing monosaccharides and their phosphates exhibit significant variations in content within biological samples and are present in many isomers, which makes the accurate quantification of reducing monosaccharides and their phosphates in biological samples a challenging task. Various analytical methods such as spectroscopy, fluorescence detection, colorimetry, nuclear magnetic resonance spectroscopy, sensor-based techniques, chromatography, and mass spectrometry are employed to detect monosaccharides and phosphates. In comparison, chromatography and mass spectrometry are highly favored for their ability to simultaneously analyze multiple components and their high sensitivity and selectivity. This review thoroughly evaluates the current chromatographic and mass spectrometric methods used for detecting reducing monosaccharides and their phosphates from 2013 to 2023, highlighting their efficacy and the advancements in these analytical technologies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yifeng Lou
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuwei Liu
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bowen Deng
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Zhu
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sen Yang
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, China
| | - Di Chen
- Zhengzhou Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Serrano R, Martin-Hidalgo D, Bilbao J, Bernardo-Seisdedos G, Millet O, Garcia-Marin LJ, Bragado MJ. Quantitative Analysis of the Human Semen Phosphorometabolome by 31P-NMR. Int J Mol Sci 2024; 25:1682. [PMID: 38338962 PMCID: PMC10855173 DOI: 10.3390/ijms25031682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphorus-containing metabolites occupy a prominent position in cell pathways. The phosphorometabolomic approach in human sperm samples will deliver valuable information as new male fertility biomarkers could emerge. This study analyzed, by 31P-NMR, seminal plasma and whole semen from asthenozoospermic and normozoospermic samples (71% vs. 27% and 45% vs. 17%, total and progressive sperm motility, respectively), and also ejaculates from healthy donors. At least 16 phosphorus-containing metabolites involved in central energy metabolism and phospholipid, nucleotide, and nicotinamide metabolic pathways were assigned and different abundances between the samples with distinct sperm quality was detected. Specifically, higher levels of phosphocholine, glucose-1-phosphate, and to a lesser degree, acetyl phosphate were found in the asthenozoospermic seminal plasma. Notably, the phosphorometabolites implicated in lipid metabolism were highlighted in the seminal plasma, while those associated with carbohydrate metabolism were more abundant in the spermatozoa. Higher levels of phosphocholine, glucose-1-phosphate, and acetyl phosphate in the seminal plasma with poor quality suggest their crucial role in supporting sperm motility through energy metabolic pathways. In the seminal plasma, phosphorometabolites related to lipid metabolism were prominent; however, spermatozoa metabolism is more dependent on carbohydrate-related energy pathways. Understanding the presence and function of sperm phosphorylated metabolites will enhance our knowledge of the metabolic profile of healthy human sperm, improving assessment and differential diagnosis.
Collapse
Affiliation(s)
- Rebeca Serrano
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Research Institute INBIO G+C, University of Extremadura, 10003 Caceres, Spain; (R.S.); (D.M.-H.)
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Research Institute INBIO G+C, University of Extremadura, 10003 Caceres, Spain; (R.S.); (D.M.-H.)
| | - Jon Bilbao
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (J.B.); (G.B.-S.); (O.M.)
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (J.B.); (G.B.-S.); (O.M.)
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (J.B.); (G.B.-S.); (O.M.)
- CIBERehd, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Luis J. Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Research Institute INBIO G+C, University of Extremadura, 10003 Caceres, Spain; (R.S.); (D.M.-H.)
| | - Maria Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Research Institute INBIO G+C, University of Extremadura, 10003 Caceres, Spain; (R.S.); (D.M.-H.)
| |
Collapse
|
3
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350 10.1002/mrc.5350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2024]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
4
|
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:628-653. [PMID: 37005774 PMCID: PMC10948111 DOI: 10.1002/mrc.5350] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.
Collapse
Affiliation(s)
- Micah J. Jeppesen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
5
|
Gowda GAN, Pascua V, Killion CE, Paranji RK, Raftery D. Labile Metabolite Profiling in Human Blood Using Phosphorus NMR Spectroscopy. Anal Chem 2023; 95:15033-15041. [PMID: 37756488 PMCID: PMC10591760 DOI: 10.1021/acs.analchem.3c03040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Phosphorus metabolites occupy a unique place in cellular function as critical intermediates and products of cellular metabolism. Human blood is the most widely used biospecimen in the clinic and in the metabolomics field, and hence an ability to profile phosphorus metabolites in blood, quantitatively, would benefit a wide variety of investigations of cellular functions in health and diseases. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the two premier analytical platforms used in the metabolomics field. However, detection and quantitation of phosphorus metabolites by MS can be challenging due to their lability, high polarity, structural isomerism, and interaction with chromatographic columns. The conventionally used 1H NMR, on the other hand, suffers from poor resolution of these compounds. As a remedy, 31P NMR promises an important alternative to both MS and 1H NMR. However, numerous challenges including the instability of phosphorus metabolites, their chemical shift sensitivity to solvent composition, pH, salt, and temperature, and the lack of identified metabolites have so far restricted the scope of 31P NMR. In the current study, we describe a method to analyze nearly 25 phosphorus metabolites in blood using a simple one-dimensional (1D) NMR spectrum. Establishment of the identity of unknown metabolites involved a combination of (a) comprehensively analyzing an array of 1D and two-dimensional (2D) 1H/31P homonuclear and heteronuclear NMR spectra of blood; (b) mapping the central carbon metabolic pathway; (c) developing and using 1H and 31P spectral and chemical shift databases; and finally (d) confirming the putative metabolite peaks with spiking using authentic compounds. The resulting simple 1D 31P NMR-based method offers an ability to visualize and quantify the levels of intermediates and products of multiple metabolic pathways, including central carbon metabolism, in one step. Overall, the findings represent a new dimension for blood metabolite analysis and are anticipated to greatly impact the blood metabolomics field.
Collapse
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
| | - Vadim Pascua
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
| | - Camerin E. Killion
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
| | - Rajan K. Paranji
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, United States
- Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| |
Collapse
|
6
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
Metabolomics has long been used in a biomedical context. The most typical samples are body fluids in which small molecules can be detected and quantified using technologies such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). Many studies, in particular in the wider field of cancer research, are based on cellular models. Different cancer cells can have vastly different ways of regulating metabolism and responses to drug treatments depend on specific metabolic mechanisms which are often cell type specific. This has led to a series of publications using metabolomics to study metabolic mechanisms. Cell-based metabolomics has specific requirements and allows for interesting approaches where metabolism is followed in real-time. Here applications of metabolomics in cell biology have been reviewed, providing insight into specific technologies used and showing exemplary case studies with an emphasis towards applications which help to understand drug mechanisms.
Collapse
Affiliation(s)
- Zuhal Eraslan
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Charlier C, Cox N, Prud'homme S, Geffard A, Nuzillard JM, Luy B, Lippens G. Virtual decoupling to break the simplification versus resolution trade-off in nuclear magnetic resonance of complex metabolic mixtures. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:619-627. [PMID: 37905230 PMCID: PMC10539796 DOI: 10.5194/mr-2-619-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/01/2023]
Abstract
The heteronuclear single quantum correlation (HSQC) experiment developed by Bodenhausen and Ruben (1980) in the early days of modern nuclear magnetic resonance (NMR) is without a doubt one of the most widely used experiments, with applications in almost every aspect of NMR including metabolomics. Acquiring this experiment, however, always implies a trade-off: simplification versus resolution. Here, we present a method that artificially lifts this barrier and demonstrate its application towards metabolite identification in a complex mixture. Based on the measurement of clean in-phase and clean anti-phase (CLIP/CLAP) HSQC spectra (Enthart et al., 2008), we construct a virtually decoupled HSQC (vd-HSQC) spectrum that maintains the highest possible resolution in the proton dimension. Combining this vd-HSQC spectrum with a J -resolved spectrum (Pell and Keeler, 2007) provides useful information for the one-dimensional proton spectrum assignment and for the identification of metabolites in Dreissena polymorpha (Prud'homme et al., 2020).
Collapse
Affiliation(s)
- Cyril Charlier
- Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
| | - Neil Cox
- Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
| | - Sophie Martine Prud'homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO
(Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin
de la Housse, Reims, France
- present address: Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO
(Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin
de la Housse, Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Burkhard Luy
- Institute for Biological Interfaces 4 – Magnetic Resonance,
Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany
| | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|