1
|
Tang H, Zhang S, Yang B, Qiu X, Wang H, Li Y. Metal-Organic Framework Sub-Nanochannels within the Confined Micropipettes: Precise Construction Makes It a Universal Aptamer-Based Sensing Platform. Anal Chem 2024; 96:17649-17656. [PMID: 39437322 DOI: 10.1021/acs.analchem.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is crucial to precisely construct metal-organic framework (MOF) sub-nanochannels at the tip of micro/nanopipettes for fundamental research and sensing applications. The quality of the MOF modification plays a significant role in influencing subsequent research, particularly in sensing applications. In this work, we present a precise method of constructing MOF sub-nanochannels at the tip of glass micropipettes, which serve as a universal aptamer-based sensing platform for the selective detection of proteins. In situ scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) mapping, and fluorescence microscopy results demonstrate that the synthesized MOF (UiO-66) nanocrystals fully block the orifice of glass micropipettes (UiO-66-GMs) without forming any nanometer-scale cracks and remain confined within the geometric boundaries of the orifice. The terminal phosphate-modified aptamer readily binds to the surface of UiO-66-GMs through metal (Zr)-phosphate coordination, ultimately forming the aptamer sensor (Apt-UiO-66-GMs). The selective quantification of proteins is achieved via a decrease in current resulting from protein binding to the aptamer. Our results indicate that the precisely constructed Apt-UiO-66-GMs sensor enables highly selective and sensitive detection of SARS-CoV-2 nucleocapsid protein and holds potential for real sample detection. Furthermore, given the sharp tip of the micropipets and the external sensing interface we have constructed, our aptamer-based sensing platform also opens avenues for single-cell analysis and in vivo sensing.
Collapse
Affiliation(s)
- Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shuai Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
2
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Zhang R, Zeng Q, Wang M, Wang L. Catalytic ability characterization of in situ synthesized Pt NP coated SBA-15 within a sub-micropipette. Chem Commun (Camb) 2024; 60:5310-5313. [PMID: 38666500 DOI: 10.1039/d4cc01079e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
An individual catalytic entity of an n-Pt/SBA-15 composite was synthesized in situ within a sub-micropipette nanoreactor, and its size-dependent catalytic ability was evaluated using the resistance pulse signals of O2 nanobubbles, originating from H2O2 decomposition catalyzed by decorated Pt NPs in the composite.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Zhao Y, Lin L, Liu R, Liu Y, Wang Y, Wang D. Dynamic and Asymmetrical Ion Concentration Polarization in Dual Nanopipettes. Anal Chem 2024; 96:4190-4196. [PMID: 38411587 DOI: 10.1021/acs.analchem.3c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Dual nanopipettes with two channels have been receiving great attention due to the convenient experimental setup and multiple measuring channels in sensing applications at nanoscale, while the involved dynamic and asymmetrical ion transport processes have not been fully elucidated. In this paper, both experimental and simulation methods are used to investigate the dynamic mass transport processes inside dual nanopipettes with two well-separated channels. The results present that the ion transport resistance through the two channels (R12) is always the add-up of the individual ones (R13 + R23) with respect to the bulk solutions, at various ionic strengths and scan rates. A constant zero-current potential is obtained when loading an asymmetrical electrolyte concentration in the two channels, and the zero-potential current displays a good linear relationship with the bulk concentration outside the pipet. Besides revealing the dynamic and asymmetrical concentration polarization in the dual nanopipettes, these results would also further promote the better usage of dual nanopipettes in electrochemical sensing and imaging applications.
Collapse
Affiliation(s)
- Yingjie Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lan Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, P. R. China
| |
Collapse
|
5
|
Zhang R, Zeng Q, Liu X, Wang L. Ion transport based structural description for in situ synthesized SBA-15 nanochannels in a sub-micropipette. NANOSCALE 2023; 15:14564-14573. [PMID: 37609921 DOI: 10.1039/d3nr01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Construction of nanoporous arrays can greatly facilitate their development in the fields of sensing, energy conversion, and nanofluidic devices. It is important to characterize the structure and understand the ion transport behaviour of a nanoporous array, especially those prepared by in situ synthesis, which are difficult to be characterized by conventional methods. Herein, an inorganic and non-crystalline mesoporous silica SBA-15 is selected as a template, where a combination (GP-SBA-15) of a sub-micropipette and SBA-15 is constructed by in situ synthesis, and the multichannel array structure of GP-SBA-15 is illustrated by its ion transport properties from current-voltage responses. Experiments of linear scan voltammetry and chronoamperometry show a rapid accumulation and slow redistribution of ions in the surface-charged nanochannels, and the high/low currents originate from the accumulation/depletion of ions in the channels. The finite element simulation is introduced to calculate the effects of surface charge and pore size on ion rectification and ion concentration distribution. In addition, the short straight channels and long bending channels present in GP-SBA-15 are demonstrated by the voltage-independent resistance pulse signals in the translocation of BSA. This study shows that electrochemical means effectively provide insight into ion transport, achieve structural description and reveal the sensing potential of GP-SBA-15.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xuye Liu
- Shantou Institute for Inspection, Shantou 515000, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Yi W, Zhang C, Zhang Q, Zhang C, Lu Y, Yi L, Wang X. Solid-State Nanopore/Nanochannel Sensing of Single Entities. Top Curr Chem (Cham) 2023; 381:13. [PMID: 37103594 DOI: 10.1007/s41061-023-00425-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Chuanping Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Qianchun Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xingzhu Wang
- School of Electrical Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
7
|
Huang LQ, Ding XL, Pan XT, Li ZQ, Wang K, Xia XH. Single-cell thermometry with a nanothermocouple probe. Chem Commun (Camb) 2023; 59:876-879. [PMID: 36598045 DOI: 10.1039/d2cc06110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, a nanopipette-based thermocouple probe that possesses high temperature resolution, rapid response, good reversibility and stability was constructed and successfully applied for single-cell temperature sensing. Different intracellular temperatures were observed in diverse types of cells, which reveals differences in their metabolism levels. Temperature responses of cancer and normal cells against various exogenous drugs were also demonstrated. The spatially resolved temperature sensing of three-dimensional cell culture models unveils the existence of their inner temperature gradients. This work would facilitate drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Han J, Liu S, Wang Z, Wu Y. Micro/nanofluidic-electrochemical biosensors for in situ tumor cell analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Gao T, Xu C, Chen ML, Wang JH, Mao L, Yu P. Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Anal Chem 2022; 94:8187-8193. [DOI: 10.1021/acs.analchem.1c05579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tienan Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Tang H, Wang H, Zhao D, Cao M, Zhu Y, Li Y. Nanopore-Based Single-Entity Electrochemistry for the Label-Free Monitoring of Single-Molecule Glycoprotein-Boronate Affinity Interaction and Its Sensing Application. Anal Chem 2022; 94:5715-5722. [PMID: 35362966 DOI: 10.1021/acs.analchem.2c00860] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein-boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Collapse
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dandan Zhao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yanyan Zhu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
11
|
Lu J, Jiang Y, Xiong T, Yu P, Jiang W, Mao L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:4328-4334. [PMID: 35245019 DOI: 10.1021/acs.analchem.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels. We implement microwave-assisted strategy to obtain asymmetric distribution of MOFs in porous anodic aluminum oxide with barrier layer on one side. After etching the barrier layer and modifying with positively charged molecules, the nanofluidic device possesses asymmetric geometry and surface charge, performing the ionic current rectification (ICR) behavior in different electrolyte concentrations. Moreover, the ICR ratio is readily regulated with visible light illumination mainly due to the enhancement of surface charge of MOFs, which is further confirmed by finite element simulation. This study provides a reliable way to build the nanofluidic platform for investigating the asymmetric ion transport through the molecular-size pores, which is envisaged to be important for molecular sensing based on ICR with molecular-size pores.
Collapse
Affiliation(s)
- Jiahao Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
|
13
|
Bai S, Liu C, Wang L. Confined Synthesis of Silver Wire at the Nanopipette-Liquid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10741-10749. [PMID: 34450023 DOI: 10.1021/acs.langmuir.1c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, silver wire is synthesized electrochemically within a nanopipette using the nanopipette-liquid/liquid interface. The i-t curve characterizes the growth state of the silver wire. The higher rate of current increase indicates the faster electron transfer and the faster growth of the silver wire; conversely, when the current does not increase significantly with time, i.e., the rate of increase of the current is small, the growth rate of the silver wire is slow. The main driving force for the growth of silver into a linear structure is the theoretical current differential between the water and oil, caused by the concentration difference between the silver nitrate and ferrocene. The growth of the silver wire is also influenced by the shape of the nanopipette. If the diameter of the pipet increases quickly, silver wire tends to produce multibranched structures, while a smaller diameter makes it easier to obtain silver wire with fewer branches due to the confinement effect. This method is also applicable to the synthesis of gold within a nanopipette. The combination of nanopipette and metallic material using a liquid-liquid interface results in a broader application of nanopipettes for nanopore sensors, nanopore electrodes, bipolar electrodes, etc.
Collapse
Affiliation(s)
- Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
14
|
Xu C, Liu Y, Xiong T, Wu F, Yu P, Wang J, Mao L. Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sens 2021; 6:2330-2338. [PMID: 34138539 DOI: 10.1021/acssensors.1c00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the dynamic behavior of charged particles driven by flow and electric field in nanochannels/pores is highly important for both fundamental study and practical applications. While a great breakthrough has been made in understanding the translocation dynamics of charged particles within the nanochannels/pores, studies on the dynamics of particles at the orifice of nanochannels/pores are scarcely reported. Here, we study particle motion at a smaller-sized orifice of a nanopipette by combining experimentally observed current transients with simulated force conditions. The theoretical force analysis reveals that dielectrophoretic force plays an equally important role as electrophoretic force and electroosmotic force, although it has often been neglected in understanding the particle translocation dynamics within the nanopipette. Under the combined action of these forces, it thus becomes difficult for particles to physically collide with the orifice of the nanopipette, resulting in a relatively low decrease in the current transients, which coincides with experimental results. We then regulate the dynamic behavior by altering experimental conditions (i.e., bias potential, nanopipette surface charge, and particle size), and the results further validate the presence and influence of forces being considered. This study improves the understanding of the relationship between particle properties and observed current transients, providing more possibilities for accurate single-particle analysis and single-entity regulation.
Collapse
Affiliation(s)
- Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|