1
|
Ge L, Jiang C, Ma C, Han CY, Gong Y, Zhu L, Liu Q, Liu FL. Ultrasensitive Determination of Amino Acids in Single Cells by Chemical Isotope Labeling with Liquid Chromatography Mass Spectrometry Analysis. Anal Chem 2025. [PMID: 39999418 DOI: 10.1021/acs.analchem.4c06441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amino acids play multiple critical roles in the regulation of various metabolic pathways and physiological processes in living organisms. Mass spectrometry (MS) has become the most pioneering platform for amino acid analysis. However, the simultaneous and sensitive determination of amino acids is still challenging because of their structural similarity and broad ranges of concentrations. To this end, a pair of isotope labeling reagents, d0/d3-2-((diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl) methanone (DMPI/d3-DMPI), were applied to label amino acid metabolites. The diazo groups on the pair of isotopomers (DMPI/d3-DMPI) can specifically react with the carboxyl groups on the amino acids. The results showed that the retention on reversed-phase column were enhanced and the detection sensitivities of 19 amino acids were increased benefiting from DMPI labeling strategy that transfers the hydrophobic indole heterocycle group of DMPI to the hydrophilic compounds of amino acids. The obtained limits of detection (LODs) of amino acids were in the range of 0.002-0.082 fmol. With this established method, we achieved the sensitive detection of amino acids in a single HUVE cell. Meanwhile, we found that the contents of amino acids in the serum of premature neonates were higher compared to normal neonates. Overall, this developed method provides great support of detection tool for the clinical metabolomic study of amino acids and the investigation of dynamic changes of amino acid metabolism in single cells.
Collapse
Affiliation(s)
- Li Ge
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chuanling Jiang
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Chengjie Ma
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Chun-Yue Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Gong
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lili Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fei-Long Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Herbert C, Valesyan S, Kist J, Limbach PA. Analysis of RNA and Its Modifications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:47-68. [PMID: 38594935 PMCID: PMC11605427 DOI: 10.1146/annurev-anchem-061622-125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.
Collapse
Affiliation(s)
- Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Satenik Valesyan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Jennifer Kist
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| |
Collapse
|
3
|
Cao X, Wang M, Huang Y, Zhang M, Zheng F, Zhang G, Su J, Yuan Y, Guo C. Determination of dimethylated nucleosides in serum from colorectal cancer patients by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123973. [PMID: 38142502 DOI: 10.1016/j.jchromb.2023.123973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
RNA modifications play a crucial regulatory role in a variety of biological processes and are closely related to numerous diseases, including cancer. The diversity of metabolites in serum makes it a favored biofluid for biomarkers discovery. In this work, a robust and accurate hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was established for simultaneous determination of dimethylated nucleosides in human serum. Using the established method, we were able to accurately quantify the concentrations of N6-2'-O-dimethyladenosine (m6Am), N2,N2-dimethylguanosine (m2,2G), and 5,2'-O-dimethyluridine (m5Um) in serum samples from 53 healthy controls, 57 advanced colorectal adenoma patients, and 39 colorectal cancer (CRC) patients. The results showed that, compared with healthy controls and advanced colorectal adenoma patients, the concentrations of m6Am and m2,2G were increased in CRC patients, while the concentration of m5Um was decreased in CRC patients. These results indicate that these three dimethylated nucleosides could be potential biomarkers for early detection of colorectal cancer. Interestingly, the level of m5Um was gradually decreased from healthy controls to advanced colorectal adenoma patients to CRC patients, indicating m5Um could also be used to evaluate the level of malignancy of colorectal tumor. In addition, this study will contribute to the investigation on the regulatory mechanisms of RNA dimethylation in the onset and development of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Mingwei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Mengwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fengjin Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Genyin Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
4
|
Zheng J, Wang H. Highly Efficient Gel Electrophoresis for Accurate Quantification of Nucleic Acid Modifications via in-Gel Digestion with UHPLC-MS/MS. Anal Chem 2023; 95:13407-13411. [PMID: 37642231 DOI: 10.1021/acs.analchem.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Gel electrophoresis is a powerful technique for the characterization of sequences, sizes and conformations of nucleic acids due to its remarkable separation efficiency. In parallel, liquid chromatography-mass spectrometry (LC-MS) has established itself as a staple tool for the meticulous characterization and accurate quantification of a multitude of DNA modifications. In this study, we devised an in-gel digestion method for coupling gel electrophoresis with LC-MS/MS. This process involves the enzymatic digestion of DNA within the gel by nucleases and release single nucleosides, which subsequently serve as a preprocessing step for (LC-MS/MS) analysis. We demonstrated that ethylenediaminetetraacetic acid (EDTA) in the routine gel electrophoresis buffer reduced the enzymatic digestion efficiency, while Mg2+ could mitigate this inhibition. We further showed EDTA-free gel electrophoresis and the process of digestion of genomic DNA and plasmid DNA within a gel was fluorescently imaged, proving the efficient digestion of DNA. By this improvement, the efficiency of an in-gel digestion could reach 60% or more of the control, compared with direct in-solution digestion. The measured abundances of DNA modifications (5-methylcytosine and N6-methyladenine) via in-gel digestion are consistent with that measured by in-solution digestion. Collectively, we showed an in-gel digestion method, which is a very useful pretreatment technique for the precise quantification of epigenetic modifications in diverse DNA molecules.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Shao WX, Min YH, Chen W, Xiong J, Guo X, Xie NB, Zhang S, Yu SY, Xie C, Feng YQ, Yuan BF. Single-Base Resolution Detection of N6-Methyladenosine in RNA by Adenosine Deamination Sequencing. Anal Chem 2023. [PMID: 37402148 DOI: 10.1021/acs.analchem.3c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
N6-Methyladenosine (m6A) is one of the most abundant and prevalent natural modifications occurring in diverse RNA species. m6A plays a wide range of roles in physiological and pathological processes. Revealing the functions of m6A relies on the faithful detection of individual m6A sites in RNA. However, developing a simple method for the single-base resolution detection of m6A is still a challenging task. Herein, we report an adenosine deamination sequencing (AD-seq) technique for the facile detection of m6A in RNA at single-base resolution. The AD-seq approach capitalizes on the selective deamination of adenosine, but not m6A, by the evolved tRNA adenosine deaminase (TadA) variant of TadA8e or the dimer protein of TadA-TadA8e. In AD-seq, adenosine is deaminated by TadA8e or TadA-TadA8e to form inosine, which pairs with cytidine and is read as guanosine in sequencing. m6A resists deamination due to the interference of the methyl group at the N6 position of adenosine. Thus, the m6A base pairs with thymine and is still read as adenosine in sequencing. The differential readouts from A and m6A in sequencing can achieve the single-base resolution detection of m6A in RNA. Application of the proposed AD-seq successfully identified individual m6A sites in Escherichia coli 23S rRNA. Taken together, the proposed AD-seq allows simple and cost-effective detection of m6A at single-base resolution in RNA, which provides a valuable tool to decipher the functions of m6A in RNA.
Collapse
Affiliation(s)
- Wen-Xuan Shao
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi-Hao Min
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jun Xiong
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Si-Yu Yu
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Jones JD, Franco MK, Smith TJ, Snyder LR, Anders AG, Ruotolo BT, Kennedy RT, Koutmou KS. Methylated guanosine and uridine modifications in S. cerevisiae mRNAs modulate translation elongation. RSC Chem Biol 2023; 4:363-378. [PMID: 37181630 PMCID: PMC10170649 DOI: 10.1039/d2cb00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 02/22/2023] Open
Abstract
Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Monika K Franco
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Laura R Snyder
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Anna G Anders
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Chen YN, Shen XY, Yu Y, Xue CY, Zhou YL, Zhang XX. In-source fragmentation of nucleosides in electrospray ionization towards more sensitive and accurate nucleoside analysis. Analyst 2023; 148:1500-1506. [PMID: 36883656 DOI: 10.1039/d3an00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Nucleosides have been found to suffer in-source fragmentation (ISF) in electrospray ionization mass spectrometry, which leads to reduced sensitivity and ambiguous identification. In this work, a combination of theoretical calculations and nuclear magnetic resonance analysis revealed the key role of protonation at N3 near the glycosidic bond during ISF. Therefore, an ultrasensitive liquid chromatography-tandem mass spectrometry system for 5-formylcytosine detection was developed with 300 fold signal enhancement. Also, we established a MS1-only platform for nucleoside profiling and successfully identified sixteen nucleosides in the total RNA of MCF-7 cells. Taking ISF into account, we can realize analysis with higher sensitivity and less ambiguity, not only for nucleosides, but for other molecules with similar protonation and fragmentation behaviors.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Xu-Yang Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Yue Yu
- Institute of Biotechnology Development, Qilu Pharmaceutical, Jinan, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
8
|
Patel A, Clark KD. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques. Anal Bioanal Chem 2023:10.1007/s00216-023-04604-y. [PMID: 36840809 DOI: 10.1007/s00216-023-04604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Post-transcriptional modifications to RNA constitute a newly appreciated layer of translation regulation in the central nervous system (CNS). The identity, stoichiometric quantity, and sequence position of these unusual epitranscriptomic marks are central to their function, making analytical methods that are capable of accurate and reproducible measurements paramount to the characterization of the neuro-epitranscriptome. RNA sequencing-based methods and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been leveraged to provide an early glimpse of the landscape of RNA modifications in bulk CNS tissues. However, recent advances in sample preparation, separations, and detection methods have revealed that individual cells display remarkable heterogeneity in their RNA modification profiles, raising questions about the prevalence and function of cell-specific distributions of post-transcriptionally modified nucleosides in the brain. In this Trends article, we present an overview of RNA sequencing and LC-MS/MS methodologies for the analysis of RNA modifications in the CNS with special emphasis on recent advancements in techniques that facilitate single-cell and subcellular detection.
Collapse
Affiliation(s)
- Arya Patel
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Kevin D Clark
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Gosset-Erard C, Didierjean M, Pansanel J, Lechner A, Wolff P, Kuhn L, Aubriet F, Leize-Wagner E, Chaimbault P, François YN. Nucleos'ID: A New Search Engine Enabling the Untargeted Identification of RNA Post-transcriptional Modifications from Tandem Mass Spectrometry Analyses of Nucleosides. Anal Chem 2023; 95:1608-1617. [PMID: 36598775 DOI: 10.1021/acs.analchem.2c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As RNA post-transcriptional modifications are of growing interest, several methods were developed for their characterization. One of them established for their identification, at the nucleosidic level, is the hyphenation of separation methods, such as liquid chromatography or capillary electrophoresis, to tandem mass spectrometry. However, to our knowledge, no software is yet available for the untargeted identification of RNA post-transcriptional modifications from MS/MS data-dependent acquisitions. Thus, very long and tedious manual data interpretations are required. To meet the need of easier and faster data interpretation, a new user-friendly search engine, called Nucleos'ID, was developed for CE-MS/MS and LC-MS/MS users. Performances of this new software were evaluated on CE-MS/MS data from nucleoside analyses of already well-described Saccharomyces cerevisiae transfer RNA and Bos taurus total tRNA extract. All samples showed great true positive, true negative, and false discovery rates considering the database size containing all modified and unmodified nucleosides referenced in the literature. The true positive and true negative rates obtained were above 0.94, while the false discovery rates were between 0.09 and 0.17. To increase the level of sample complexity, untargeted identification of several RNA modifications from Pseudomonas aeruginosa 70S ribosome was achieved by the Nucleos'ID search following CE-MS/MS analysis.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg67000, France.,Université de Lorraine, LCP-A2MC, F-57000Metz, France
| | - Mévie Didierjean
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg67000, France
| | - Jérome Pansanel
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS, UMR7178, Strasbourg67037, France
| | - Antony Lechner
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, Université de Strasbourg, Strasbourg67084, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, Université de Strasbourg, Strasbourg67084, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FR1589 CNRS, CEDEX, Strasbourg67084, France
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg67000, France
| | | | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg67000, France
| |
Collapse
|
10
|
Ding JH, Chen MY, Xie NB, Xie C, Xiong N, He JG, Wang J, Guo C, Feng YQ, Yuan BF. Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling. Biosens Bioelectron 2023; 219:114821. [PMID: 36279821 DOI: 10.1016/j.bios.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Chen
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Neng-Bin Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Conghua Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Nanxiang Xiong
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Jin-Gang He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yu-Qi Feng
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Bi-Feng Yuan
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
11
|
Felix AS, Quillin AL, Mousavi S, Heemstra JM. Harnessing Nature's Molecular Recognition Capabilities to Map and Study RNA Modifications. Acc Chem Res 2022; 55:2271-2279. [PMID: 35900335 PMCID: PMC9388579 DOI: 10.1021/acs.accounts.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA editing or "epitranscriptomic modification" refers to the processing of RNA that occurs after transcription to alter the sequence or structure of the nucleic acid. These chemical alterations can be found on either the ribose sugar or the nucleobase, and although many are "silent" and do not change the Watson-Crick-Franklin code of the RNA, others result in recoding events. More than 170 RNA modifications have been identified so far, each having a specific biological purpose. Additionally, dysregulated RNA editing has been linked to several types of diseases and disorders. As new modifications are discovered and our understanding of their functional impact grows, so does the need for selective methods of identifying and mapping editing sites in the transcriptome.The most common methods for studying RNA modifications rely on antibodies as affinity reagents; however, antibodies can be difficult to generate and often have undesirable off-target binding. More recently, selective chemical labeling has advanced the field by offering techniques that can be used for the detection, enrichment, and quantification of RNA modifications. In our method using acrylamide for inosine labeling, we demonstrated the versatility with which this approach enables pull-down or downstream functionalization with other tags or affinity handles. Although this method did enable the quantitative analysis of A-to-I editing levels, we found that selectivity posed a significant limitation, likely because of the similar reactivity profiles of inosine and pseudouridine or other nucleobases.Seeking to overcome the inherent limitations of antibodies and chemical labeling methods, a more recent approach to studying the epitranscriptome is through the repurposing of proteins and enzymes that recognize modified RNA. Our laboratory has used Endonuclease V, a repair enzyme that cleaves inosine-containing RNAs, and reprogrammed it to instead bind inosine. We first harnessed EndoV to develop a preparative technique for RNA sequencing that we termed EndoVIPER-seq. This method uses EndoV to enrich inosine-edited RNAs, providing better coverage in RNA sequencing and leading to the discovery of previously undetected A-to-I editing sites. We also leveraged EndoV to create a plate-based immunoassay (EndoVLISA) to quantify inosine in cellular RNA. This approach can detect differential A-to-I editing levels across tissue types or disease states while being independent of RNA sequencing, making it cost-effective and high-throughput. By harnessing the molecular recognition capabilities of this enzyme, we show that EndoV can be repurposed as an "anti-inosine antibody" to develop new methods of detecting and enriching inosine from cellular RNA.Nature has evolved a plethora of proteins and enzymes that selectively recognize and act on RNA modifications, and exploiting the affinity of these biomolecules offers a promising new direction for the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ansley S. Felix
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Alexandria L. Quillin
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shikufa Mousavi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
12
|
Comprehensive profiling and evaluation of the alteration of RNA modifications in thyroid carcinoma by liquid chromatography-tandem mass spectrometry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen JJ, You XJ, Li L, Xie NB, Ding JH, Yuan BF, Feng YQ. Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing. Anal Chem 2022; 94:8740-8747. [PMID: 35678728 DOI: 10.1021/acs.analchem.2c01226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Adenosine-to-inosine (A-to-Ino) RNA editing is one of the most prevalent modifications among all types of RNA. Abnormal A-to-InoRNA editing has been demonstrated to be associated with many human diseases. Identification of A-to-Ino editing sites is indispensable to deciphering their biological roles. Herein, by employing the unique property of human endonuclease V (hEndoV), we proposed a hEndoV-mediated sequencing (hEndoV-seq) method for the single-base resolution detection of A-to-InoRNA editing sites. In this approach, the terminal 3'OH of RNA is first blocked by 3'-deoxyadenosine (3'-deoxy-A). Specific cleavage of Ino sites by hEndoV protein produces new terminal 3'OH, which can be identified by sequencing analysis, and therefore offers the site-specific detection of Ino in RNA. The principle of hEndoV-seq is straightforward and the analytical procedure is simple. No chemical reaction is involved in the sequencing library preparation. The whole procedure in hEndoV-seq is carried out under mild conditions and RNA is not prone to degradation. Taken together, the proposed hEndoV-seq method is capable of site-specific identification of A-to-Ino editing in RNA, which provides a valuable tool for elucidating the functions of A-to-Ino editing in RNA.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
14
|
Tang XM, Ye TT, You XJ, Yin XM, Ding JH, Shao WX, Chen MY, Yuan BF, Feng YQ. Mass spectrometry profiling analysis enables the identification of new modifications in ribosomal RNA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chen MY, Gui Z, Chen KK, Ding JH, He JG, Xiong J, Li JL, Wang J, Yuan BF, Feng YQ. Adolescent alcohol exposure alters DNA and RNA modifications in peripheral blood by liquid chromatography-tandem mass spectrometry analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Feng YJ, You XJ, Ding JH, Zhang YF, Yuan BF, Feng YQ. Identification of Inosine and 2'- O-Methylinosine Modifications in Yeast Messenger RNA by Liquid Chromatography-Tandem Mass Spectrometry Analysis. Anal Chem 2022; 94:4747-4755. [PMID: 35266699 DOI: 10.1021/acs.analchem.1c05292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery of reversible modifications in messenger RNA (mRNA) opens new research directions in RNA modification-mediated epigenetic regulation. Yeast is an extensively used model organism in molecular biology. Systematic investigation and profiling of modifications in yeast mRNA would promote our understanding of the physiological regulation mechanisms in yeast. However, due to the high abundance of ribosomal RNA (rRNA) and transfer RNA (tRNA) in total RNA, isolation of low abundance of mRNA frequently suffers from the contamination of rRNA and tRNA, which will lead to the false-positive determination and inaccurate quantification of modifications in mRNA. Therefore, obtaining high-purity mRNA is critical for precise determination and accurate quantification of modifications in mRNA, especially for studies that focus on discovering new ones. Herein, we proposed a successive orthogonal isolation method by combining polyT-based purification and agarose gel electrophoresis purification for extracting high-purity mRNA. With the extracted high-purity yeast mRNA, we systemically explored the modifications in yeast mRNA by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The results showed that in addition to the previously reported eight kinds of modifications, two novel modifications of inosine (Ino) and 2'-O-methylinosine (Im) were identified to be prevalent in yeast mRNA. It is worth noting that Im was reported for the first time, to the best of our knowledge, to exist in living organisms in the three domains of life. Moreover, we observed that the levels of 10 kinds of modifications including Ino and Im in yeast mRNA exhibited dynamic change at different growth stages of yeast cells. Furthermore, Im in mRNA showed a significant decrease while in response to H2O2 treatment. These results indicated that the two newly identified modifications in yeast mRNA were involved in yeast cell growth and response to environmental stress. Taken together, we reported two new modifications of Ino and Im in yeast mRNA, which expends the diversity of RNA modifications in yeast and also suggests new regulators for modulating yeast physiological functions.
Collapse
Affiliation(s)
- Ya-Jing Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Fan Zhang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
17
|
You XJ, Li L, Ji TT, Xie NB, Yuan BF, Feng YQ. 6-Thioguanine incorporates into RNA and induces adenosine-to-inosine editing in acute lymphoblastic leukemia cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Zhang QF, Xiao HM, Zhan JT, Yuan BF, Feng YQ. Simultaneous determination of indole metabolites of tryptophan in rat feces by chemical labeling assisted liquid chromatography-tandem mass spectrometry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Zhang R, Lai W, Wang H. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Anal Chem 2021; 93:15567-15572. [PMID: 34783527 DOI: 10.1021/acs.analchem.1c04151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, subchromatin structure-based quantification of epigenetic DNA modifications is limited. Matrix attachment regions (MARs), an important subchromatin structure, contain DNA elements that specifically bind chromatin to the nuclear matrix in eukaryotes and are involved in a number of diseases. Here, we exploited a high-salt extraction-based subchromatin fractionation approach for the isolation of MAR DNA and other fractions and further developed heavy stable isotope-diluted ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the specific quantification of epigenetic DNA modifications in the subchromatin structures. By this approach, we showed for the first time that the content of a DNA demethylation intermediate, 5-hydroxymethylcytosine (5hmdC), in MARs decreased significantly in four tested cell lines compared to the contents in genomic DNA. In particular, the content of DNA 5hmdC in the MARs of 293T cell lines decreased the most at approximately 41.09%. Together, our findings implicate that MAR DNA is less sensitive than genomic DNA to DNA demethylation.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
20
|
Feng Y, Chen JJ, Xie NB, Ding JH, You XJ, Tao WB, Zhang X, Yi C, Zhou X, Yuan BF, Feng YQ. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem Sci 2021; 12:11322-11329. [PMID: 34567494 PMCID: PMC8409474 DOI: 10.1039/d1sc02161c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
DNA cytosine methylation (5-methylcytosine, 5mC) is the most important epigenetic mark in higher eukaryotes. 5mC in genomes is dynamically controlled by writers and erasers. DNA (cytosine-5)-methyltransferases (DNMTs) are responsible for the generation and maintenance of 5mC in genomes. Active demethylation of 5-methylcytosine (5mC) is achieved by ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are further processed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER) to restore unmodified cytosines. The TET-TDG-BER pathway could cause the production of DNA strand breaks and therefore jeopardize the integrity of genomes. Here, we investigated the direct decarboxylation of 5caC in mammalian genomes by using metabolic labeling with 2'-fluorinated 5caC (F-5caC) and mass spectrometry analysis. Our results clearly demonstrated the decarboxylation of 5caC occurring in mammalian genomes, which unveiled that, in addition to the TET-TDG-BER pathway, the direct decarboxylation of TET-produced 5caC constituted a new pathway for active demethylation of 5mC in mammalian genomes.
Collapse
Affiliation(s)
- Yang Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Juan-Juan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Wan-Bing Tao
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xiaoxue Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Xiang Zhou
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
21
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|