1
|
Liu M, Zhou Y, Luo T, Cao X, Fan D, Huang S, Dong J, Chen F, Zeng W. Seeing the unseen: NIR probes for reactive nitrogen species biosensing and bioimaging. Talanta 2025; 285:127334. [PMID: 39673979 DOI: 10.1016/j.talanta.2024.127334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Reactive nitrogen species (RNS) play a crucial role in both health and disease, making their accurate and sensitive detection essential. However, their transient nature (∼milliseconds), high reactivity, and low abundance (nM-μM) in complex biological environments present significant challenges. Near-infrared (NIR) fluorescent probes have emerged as a promising solution for in vivo RNS imaging due to their enhanced sensitivity, spatiotemporal resolution, and deep tissue penetration. This review highlights recent advances in the design strategies, sensing mechanisms, and applications of NIR fluorescent probes in bioimaging. Additionally, we address current challenges and discuss future directions to advance the development of improved probes with potential for clinical translation, as well as the next generation of NIR probes for RNS biosensing and bioimaging.
Collapse
Affiliation(s)
- Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Yiyang Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Xiaozheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
2
|
Lin B, Fan J, Li S, Han Y. A novel mitochondrial-targeted fluorescent probe for ratiometric imaging of nitric oxide in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125636. [PMID: 39708399 DOI: 10.1016/j.saa.2024.125636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Nitric oxide (NO) is a key signaling molecule that regulates energy metabolism, apoptosis, and antioxidant balance within mitochondria. It is closely associated with the development of cardiovascular diseases, neurodegenerative diseases, and cancer. Therefore, developing fluorescent probes capable of accurately detecting NO levels in mitochondria is essential for understanding disease mechanisms and clinical diagnostics. In this study, we developed a novel fluorescent probe based on the isophorone fluorophore. This probe achieves high sensitivity and specific ratiometric detection of NO in mitochondria by regulating the intramolecular charge transfer (ICT) effect. The probe emits red fluorescence before reacting with NO, and the addition of NO triggers an amine-NO addition reaction that inhibits the ICT effect, resulting in a color change to yellow-green fluorescence. This ratiometric fluorescence response provides a new method for quantitatively detecting NO. Additionally, the probe has a significant Stokes shift and good ratiometric wavelength separation, enhancing detection accuracy. It localizes explicitly to mitochondria, directly reflecting changes in mitochondrial NO concentration. Experiments in HeLa cells and zebrafish models have demonstrated the potential application of the probe in diagnosing and studying NO-related diseases. This provides new strategies and tools for researching the biological functions of NO and the early diagnosis of related diseases.
Collapse
Affiliation(s)
- Bin Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxin Fan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuting Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Zhang Q, Huang R, Zhang Z, Shi Z, Sun J, Gao F. Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4626-4636. [PMID: 39797821 DOI: 10.1021/acsami.4c18731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far. Herein, an acid-promoted two-photon semiconducting polymer dot (Lyso-RS Pdot) with dual emission in green and red channels and dual-sensing sites is successfully fabricated with two newly designed polymers NADE-PSMA and PFNA-10TBT as precursors. The red conjugated polymer PFNA-10TBT with pH-inert and HClO-sensitive units is employed to evaluate the HClO concentration in turn-off fluorescence. Meanwhile, the amphiphilic green fluorescent polymer NADE-PSMA sensitive to pH and HClO is employed to evaluate the pH value or HClO concentration in turn-on fluorescence. The resultant Lyso-RS Pdots not only display satisfactory performances for detecting HClO and pH but also achieve accurate two-photon imaging of HClO in lysosomes and the colon of IBD mice based on the distinguished properties such as ratiometric signal output, acid-promoted signal amplification, ultrafast response, and two-photon excitation. The results demonstrate that the HClO level in IBD mice is elevated, and the fast early diagnosis of IBD can be achieved through fluorescence imaging by the proposed Lyso-RS Pdots. This work may provide some solid perspectives for fluorescent diagnosis of H+ and HClO-related diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P. R. China
| | - Rui Huang
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ziwei Zhang
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhen Shi
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junyong Sun
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
4
|
Wang WJ, Xin ZY, Liu D, Liu Q, Liu Y, Qiu Z, Zhang J, Alam P, Cai XM, Zhao Z, Tang BZ. Intracellularly manipulable aggregation of the aggregation-induced emission luminogens. Biosens Bioelectron 2025; 267:116800. [PMID: 39341072 DOI: 10.1016/j.bios.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biophotonics has seen significant advancements with the development of optical imaging techniques facilitating the noninvasive detection of biologically relevant species. Aggregation-induced emission (AIE) materials have emerged as a novel class of luminogens exhibiting enhanced luminescence or photodynamic efficiency in the aggregated state, making them ideal for biomedical applications. The intracellularly controlled aggregation of aggregate-induced emission luminogens (AIEgens) enables high-resolution imaging of intracellular targets and diagnosis of related diseases, and enables disease therapy by exploiting the novel properties of aggregates. This review provides an in-depth analysis of the strategies employed to modulate the aggregation of AIEgens, focusing on the importance of molecular modifications to improve hydrophilicity and achieve precise control over the intercellular aggregation of AIEgens. Furthermore, the representative applications of AIEgens in bioimaging, such as enzyme activity monitoring, protein tracking, organelle function monitoring, and in vivo tumor-specific therapeutics, are reviewed. Additionally, we outline the challenges and future opportunities for AIE research, emphasizing the importance of the strategies for realizing the precisely controllable aggregation of AIEgens inside cells and the need for extending AIEgens' absorption and emission wavelengths. This review aims to elucidate the rational development of responsive AIEgens for advanced biomedical applications.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Dan Liu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China.
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| |
Collapse
|
5
|
Liu J, Chen X, Wang A, Su D. A mitochondria-targeted nitric oxide probe with large Stokes shift for real-time imaging and evaluation of inflammatory bowel disease in situ. Anal Chim Acta 2024; 1332:343372. [PMID: 39580178 DOI: 10.1016/j.aca.2024.343372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a prevalent inflammatory disorder, and the abnormal expression of nitric oxide (NO) produced by biocatalysis of iNOS enzyme in mitochondria is directly associated with the occurrence and progression of IBD. Activatable fluorescent probes offer promising tools for early diagnosis of IBD, however, inadequate biodistribution and limited targeting properties of these probes in vivo severely impede accurate diagnosis of IBD and real-time evaluation of inflammatory levels in situ. Therefore, it is necessary to design a highly efficient fluorescent probe towards NO to overcome inadequate biodistribution and achieve accurate diagnosis and evaluation of IBD in situ. RESULTS We designed a highly efficient mitochondria-targeted "turn-on" NIR fluorescent probe Cy-OMe which has excellent targeting properties and imaging ability. The response mechanism is probe Cy-OMe rapidly undergoes N-nitrosation reaction resulting in "turn-on" NIR fluorescence signal when exposed to NO. Cy-OMe exhibits high sensitivity and specificity in detecting NO content in vitro, owing to its large Stokes shift. Furthermore, the probe Cy-OMe not only efficiently targets mitochondria but also enables precise assessment of fluctuations in endogenous NO concertation across various cell types. Importantly, by virtue of large Stokes shift and excellent mitochondrial targeting ability, Cy-OMe has the capability to specifically evaluate dynamic fluctuations of NO in lipopolysaccharide (LPS)-stimulated IBD mouse models in situ and Cy-OMe was achieved high-contrast imaging and precision diagnosis of intestinal inflammation diseases. SIGNIFICANCE Cy-OMe can accurately assess fluctuations in NO levels and show high signal fidelity in the diseased intestine region, which has prospects in the non-invasive diagnosis of intestinal inflammation in vivo. At the same time, it is expected to serve as a potential diagnose platform for investigating the physiological processes underlying NO-related inflammatory diseases and promoting understanding of the pathological functions of NO across diverse inflammatory diseases.
Collapse
Affiliation(s)
- Jiatian Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China
| | - Andong Wang
- Large-scale Instruments and Equipments Sharing Platform, Beijing University of Technology, 100124, Beijing, PR China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124, Beijing, PR China.
| |
Collapse
|
6
|
Yadav R, SanuKhan R, Kalita N, Mendiratta S, Sivaramakrishnan S, Murugan S, Samanta A. Molecular Imaging of Nitric Oxide Surrogates with Organelle-Specific Fluorescent Probes. Chem Asian J 2024:e202401237. [PMID: 39629512 DOI: 10.1002/asia.202401237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Nitric oxide is an important signalling molecule responsible for maintaining body's homeostasis. Any dysregulation in NO can lead to many pathological conditions like atherosclerosis, cancers, neurodegenerative disorders, hypertension and inflammation. Several, sensing technologies are used for sensing NO. Among these, fluorescent imaging is considered to be one of the most efficient. Till date, approximately 123 fluorescent probes are reported related to nitric oxide (NO) sensing fluorescent probes for the sensitive, selective, and real-time detection of NO at both the cellular and subcellular levels. In the past five years, around 41 fluorescent probes and four review articles have been published, specifically focusing on the detection of nitric oxide. Despite considerable advancements in this area, no systematic review has summarized various organelle-targeting NO-sensing fluorescent probes. Herein, we summarized last five years from 2019 to 2024 along with the key pioneering research in this field covering divergent roles of NO across various cellular organelles. We have included 41 probes by classifying into different organelle targeting sections. We strongly believe this review will provide an advanced summary of NO specific fluorescent probes and their applications for monitoring the progression of diseases in in vitro to in vivo models such as drosophila, zebrafish, mouse models.
Collapse
Affiliation(s)
- Rashmi Yadav
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Rafique SanuKhan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sana Mendiratta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreya Sivaramakrishnan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreekanth Murugan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
7
|
Jin X, Wang Q, Xie T, Xu ST, Chen DA, Cao GY, Wang G, Wang J, Zhen L. Dual-Locked Chemiluminescent Probe Enables Precise Imaging and Timely Diagnosis of Colitis via Chymotrypsin/Vanin-1 Cascade Activation. Anal Chem 2024; 96:18635-18644. [PMID: 39533874 DOI: 10.1021/acs.analchem.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of precise diagnosis and the discovery of individualized drugs go together to provide effective therapy against inflammatory bowel disease (IBD). The exploitation of the unique imaging advantages of chemiluminescent probes represents a pivotal strategy for achieving this goal. Nevertheless, the dual-locked strategy, which is believed to enhance precision, is rarely employed in the design of chemiluminescent probes. A novel dual-locked chemiluminescent probe, BPan-CL, was designed based on IBD candidate biomarkers chymotrypsin (CHT) and vanin-1. BPan-CL exhibited specific reactivity and chemiluminescence response when subjected to simultaneous stimulation of CHT and vanin-1, with a signal-to-noise ratio superior to that of the fluorescent probe with the same dual-locked mode. In both live cell and IBD mice imaging, BPan-CL demonstrated superior sensitivity compared to its single-locked counterpart, Pan-CL. In contrast to Pan-CL, BPan-CL was able to more accurately identify IBD and healthy mice by in vivo imaging and allowed for early prediction of IBD using a noninvasive fecal test. BPan-CL has identified CHT and vanin-1 as valuable combinatorial biomarkers for accurate and early IBD diagnosis. This strategy has significant potential for use in biomedical imaging and future individualized therapies.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qi Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - De-Ao Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Gao-Yao Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
8
|
Dong X, Ran X, Hou C, Zhou Z, Wang Z, Zhang T. Theoretical insights into the linker effects on the turn-on fluorescence behaviors in pyridazinone-containing NO probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124761. [PMID: 38955069 DOI: 10.1016/j.saa.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Fluorescent probes with preferred photophysical properties have attracted considerable attention for their advantages in real-time and accurate detection of signalling molecules in living organisms. Nitric oxide (NO) is a ubiquitous cellular messenger closely associated with many physiological and pathological processes. A NO fluorescent probe, PYSNO, based on the pyridazinone (PY) scaffold with o-phenylenediamine as the receptor and thiophene (S) as the linker has been synthesized. Inspired by the experimental guidance, three other dyes (PYSSNO, PYSONO and PYONO) were theoretically designed by replacing the S linker with thieno[3,2-b]thiophene (SS), thieno[3,2-b]thiophene 1,1-dioxide (SO) and thiophene 1,1-dioxide (O) groups. The photophysical properties were theoretically investigated in aqueous solution, by the combined time-dependent density functional theory, polarizable continuum model and thermal vibration correlation function approaches. Our results indicate that the emission wavelengths of all the designed dyes show red shifts due to either an increase in the conjugation length or electron-accepting ability of the linkers compared to PYSNO. The photoinduced electron transfer (PET) processes are all absent in these systems. PYSSNO and PYSONO are theoretically expected to be promising candidates for novel NO fluorescent probes, but the suitability of PYONO as a NO probe is compromised by the predicted non-luminescent emission before and after reaction with NO. Our study not only offers valuable insights into the detailed structure-property relationships, but also opens a new avenue for the rational design of efficient fluorescent sensors for NO detection.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Chengshuo Hou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ziheng Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
9
|
Zhang Y, Wang S, Zhang L, Peng T. Development of a urea-bond cleavage reaction induced by nitric oxide for fluorescence imaging. J Mater Chem B 2024; 12:10248-10257. [PMID: 39291486 DOI: 10.1039/d4tb01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule with indispensable roles in physiological processes, but its abnormal production is implicated in various disease conditions. Detecting NO is crucial for interrogating its biological roles. Although many o-phenylenediamine-based fluorescent probes have been developed, only a small fraction has been employed in vivo. Moreover, these probes largely require direct modifications of the fluorophore backbones to render NO responsiveness, which restricts the general applicability of o-phenylenediamine-based probe designs to other types of fluorophores. Here, we report the rational development, optimization, and application of a NO-induced urea-bond cleavage reaction for selective fluorescence detection and imaging of NO in living systems. Through rational design and extensive screening, we identified a 2-aminophenylurea-derived functionality that can react with NO through N-nitrosation, acyltriazole formation, and hydrolysis to induce the cleavage of the urea bond and release of the amino-containing coumarin fluorophore. By caging different amino-containing fluorophore scaffolds with the 2-aminophenylurea-derived functionality, we modularly developed a series of NO fluorescent probes with different excitation and emission profiles for the detection of NO in aqueous solutions and live cells. Among these probes, the near-infrared probe has been demonstrated to enable in vivo fluorescence visualization of elevated endogenous levels of NO in a murine inflammation model. Overall, this study provides a NO-induced urea-bond cleavage reaction and establishes the utility of this reaction for the general and modular development of NO fluorescent probes, thus opening new opportunities for studying and manipulating NO in biological systems.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lina Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
10
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
11
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
12
|
Yang K, Tian Y, Zheng B, Wu F, Hu T, Yang Y, Pan J, Xiong H, Wang S. Fast-Responsive HClO-Activated Near-Infrared Fluorescent Probe for In Vivo Diagnosis of Inflammatory Bowel Disease and Ex Vivo Optical Fecal Analysis. Anal Chem 2024; 96:12065-12073. [PMID: 38982573 DOI: 10.1021/acs.analchem.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, whose etiology is intimately related to the overproduction of hypochlorous acid (HClO). Optical monitoring of HClO in the living body favors real-time diagnosis of inflammatory diseases. However, HClO-activated near-infrared (NIR) fluorescent probes with rapid response and high inflammatory cell uptake are still lacking. Herein, we report an activatable acceptor-π-acceptor (A-π-A)-type NIR fluorescent probe (Cy-DM) bearing two d-mannosamine groups for the sensitive detection of HClO in early IBD and stool testing. Once reacted with HClO, nonfluorescent Cy-DM could be turned on within 2 s by generating a donor-π-acceptor (D-π-A) structure due to the enhanced intramolecular charge transfer mechanism, showing intense NIR fluorescence emission at 700 nm and a large Stokes shift of 115 nm. Moreover, it was able to sensitively and selectively image exogenous and endogenous HClO in the lysosomes of living cells with a detection limit of 0.84 μM. More importantly, because of the d-mannosamine modification, Cy-DM was efficiently taken up by inflammatory cells in the intestine after intravenous administration, allowing noninvasive visualization of endogenous HClO in a lipopolysaccharide-induced IBD mouse model with a high fluorescence contrast of 6.8/1. In addition, water-soluble Cy-DM has also been successfully applied in ex vivo optical fecal analysis, exhibiting a 3.4-fold higher fluorescence intensity in the feces excreted by IBD mice. We believe that Cy-DM is promising as an invaluable tool for rapid diagnosis of HClO-related diseases as well as stool testing.
Collapse
Affiliation(s)
- Kairong Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingye Pan
- Zhejiang Key Laboratory of Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shan Wang
- Zhejiang Key Laboratory of Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Zhang M, Tong C. Real-time and specific monitoring of nitric oxide and evaluating of the oxidative stress in living cells and zebrafish under the pollutant exposure using a carbon dot-based composite fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134558. [PMID: 38739958 DOI: 10.1016/j.jhazmat.2024.134558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Nitric oxide (NO) functions as an essential signalling molecule in various physiological and pathological pathways. In vitro and vivo redox processes mediated by reactive oxygen species (ROS) and nitric oxide (NO) directly influence the intracellular state. In this study, a red-emitting fluorescent nanoprobe, N,S-CDs@Zn-ICA, was synthesized to monitor NO fluctuations in living cells and zebrafish under the exposure to various pollutants. Red-emissive carbon dots (N,S-CDs) were synthesized by a hydrothermal method using o-phenylenediamine and urea as carbon / nitrogen sources, and H2SO4 as sulfur source. Glutathione (GSH) was introduced to link N,S-CDs with metal organic complexes (Zn-ICA) through an amidation reaction to fabricate a carbon dot-based composite fluorescent probe, which greatly improved the selectivity, stability, and response time of the N,S-CDs. The composite probe has high selectivity and sensitivity with limit of detection (LOD) of 96.0 nM. Furthermore, the proposed probe was successfully used to monitor the dynamic changes in NO levels and evaluate oxidative stress in MCF-7 cells and zebrafish under the exposure to various pollutants, including seven heavy metal ions (such as Pb2+, Cd2+, and Hg2+) and nine organic pollutants at different concentrations and exposure times. This work provides a novel strategy for constructing highly selective and red-emitting fluorescent probe for real-time and dynamic monitoring of NO and further evaluating oxidative stress induced by pollutants in vitro and in vivo via fluorescence imaging.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Ren X, Han S, Li Y, Zeng Y, Li H, Yao C, Yang L, Song X. Tumor Microenvironment-Activatable Phototheranostic: Leveraging Nitric Oxide and Weak Acidity as Dual Biomarkers for Ratiometric Fluorescence, Photoacoustic Imaging, and Photothermal Therapy. Anal Chem 2024; 96:8689-8695. [PMID: 38748889 DOI: 10.1021/acs.analchem.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumor microenvironment-responsive phototheranostic agents are highly sought after for their ability to improve diagnostic accuracy and treatment specificity. Here, we introduce a novel single-molecule probe, POZ-NO, which is activated by nitric oxide (NO) and weak acidity, enabling dual-mode imaging and photothermal therapy (PTT) of tumors. In acidic environments with elevated NO levels, POZ-NO exhibits a distinctive ratiometric fluorescence signal shift from the red to near-infrared, accompanied by a 700 nm photoacoustic signal. Additionally, POZ-NO demonstrated potent photothermal effects upon NO and acidity activation, achieving an impressive conversion efficiency of 74.3% under 735 nm laser irradiation. In vivo studies confirm POZ-NO's ability to accurately image tumors through ratiometric fluorescence and photoacoustic modes while selectively treating tumors with PTT.
Collapse
Affiliation(s)
- Xiaojie Ren
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yiling Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuyang Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Haipu Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chaoyi Yao
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
15
|
Liu J, Yang X, Wu S, Gong P, Pan F, Zhang P, Lee CS, Liu C, Wong KMC. Iridium(III) complexes decorated with silicane-modified rhodamine: near-infrared light-initiated photosensitizers for efficient deep-tissue penetration photodynamic therapy. J Mater Chem B 2024; 12:3710-3718. [PMID: 38529668 DOI: 10.1039/d4tb00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Meeting the demand for efficient photosensitizers in photodynamic therapy (PDT), a series of iridium(III) complexes decorated with silicane-modified rhodamine (Si-rhodamine) was meticulously designed and synthesized. These complexes demonstrate exceptional PDT potential owing to their strong absorption in the near-infrared (NIR) spectrum, particularly responsive to 808 nm laser stimulation. This feature is pivotal, enabling deep-penetration laser excitation and overcoming depth-related challenges in clinical PDT applications. The molecular structures of these complexes allow for reliable tuning of singlet oxygen generation with NIR excitation, through modification of the cyclometalating ligand. Notably, one of the complexes (4) exhibits a remarkable ROS quantum yield of 0.69. In vivo results underscore the efficacy of 4, showcasing significant tumor regression at depths of up to 8.4 mm. This study introduces a promising paradigm for designing photosensitizers capable of harnessing NIR light effectively for deep PDT applications.
Collapse
Affiliation(s)
- Jiqiang Liu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Siye Wu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Fan Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chuangjun Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, 463000 Zhumadian, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
| |
Collapse
|
16
|
Hu J, Wang R, Liao W, Hu J, Li L, Cheng Z, Chen WH. A novel donor-acceptor fluorescent probe for the fluorogenic/ chromogenic detection and bioimaging of nitric oxide. Anal Chim Acta 2024; 1296:342333. [PMID: 38401928 DOI: 10.1016/j.aca.2024.342333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Nitric oxide (NO) plays an essential role in regulating various physiological and pathological processes. This has spurred various efforts to develop feasible methods for the detection of NO. Herein we designed and synthesized a novel donor-acceptor fluorescent probe Car-NO for the selective and specific detection of NO. Reaction of Car-NO with NO generated a new donor-acceptor structure with strong intramolecular charge transfer (ICT) effect, and led to remarkable chromogenic change from yellow to blue and dramatic fluorescence quenching. Car-NO exhibited high selectivity, excellent sensitivity, and rapid response for the detection of NO. In addition, the nanoparticles prepared from Car-NO (i.e., Car-NO NPs) showed strong NIR emission and high selectivity/sensitivity. Car-NO NPs was successfully employed to image both endogenous and exogenous NO in HeLa and RAW 264.7 cells. The present findings reveal that Car-NO is a promising probe for the detection and bioimaging of NO.
Collapse
Affiliation(s)
- Jingxin Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
17
|
Wang M, Lin B, Chen Y, Liu H, Ju Z, Lv R. Fluorescence-Recovered Wearable Hydrogel Patch for In Vitro Detection of Glucose Based on Rare-Earth Nanoparticles. ACS Biomater Sci Eng 2024; 10:1128-1138. [PMID: 38221709 DOI: 10.1021/acsbiomaterials.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.
Collapse
Affiliation(s)
- Min Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Yitong Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Hanyu Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ziyue Ju
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
18
|
Zhang Y, Wang S, Sun Y, Xu H, Xu Z, Liang X, Yang J, Song W, Chen M, Fang M. Evaluation of a biomarker (NO) dynamics in inflammatory zebrafish and periodontitis saliva samples via a fast-response and sensitive fluorescent probe. Bioorg Chem 2024; 143:107014. [PMID: 38061180 DOI: 10.1016/j.bioorg.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Many pathological processes include nitric oxide (NO), a signaling transduction molecule. Tumors, cardiovascular, cerebrovascular, neurodegenerative, and other illnesses are linked to abnormal NO levels. Thus, evaluating NO levels in vitro and in vivo is crucial for studying chemical biology process of associated disorders. This work devised and manufactured a coumarin-based fluorescent probe ZPS-NO to detect nitric oxide (NO). The reaction between ZPS-NO and NO produced a highly selective and sensitive optical response that caused a powerful fluorescence "turn-on" effect with a ultra-low NO detection limit of 14.5 nM. Furthermore, the probe was applied to sense and image NO in living cells and inflammatory model of zebrafish, as well as to detect NO in periodontitis patients' saliva samples. We anticipate that probe ZPS-NO will serve as a practical and effective tool for assessing the interactions and evaluation of periodontitis development.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China
| | - Shaocai Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Yu Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Hanbo Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Zihan Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Xin Liang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Jianguang Yang
- Department of Periodontal Disease, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| |
Collapse
|
19
|
Dong H, Tang MY, Shen S, Cao XQ, Zhang XF. A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules 2023; 28:7976. [PMID: 38138467 PMCID: PMC10745935 DOI: 10.3390/molecules28247976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of physiological functions. As a member of the ROS family, peroxynitrite (ONOO-) possesses strong oxidation and nitrification abilities. Abnormally elevated levels of ONOO- can lead to cellular oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore, we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO-. Upon reaction with ONOO-, DH-1 exhibited a significant fluorescence signal enhancement (approximately 34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluorescence imaging validated its ability to detect ONOO- changes in HeLa and RAW264.7 cells. Notably, we observed the ONOO- generation during the ferroptosis process by taking advantage of the probe. DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential applications in the study of ONOO--associated diseases in biosystems.
Collapse
Affiliation(s)
| | | | - Shili Shen
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| | | | - Xiao-Fan Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| |
Collapse
|
20
|
Fu L, Huang H, Zuo Z, Peng Y. A Single Organic Fluorescent Probe for the Discrimination of Dual Spontaneous ROS in Living Organisms: Theoretical Approach. Molecules 2023; 28:6983. [PMID: 37836826 PMCID: PMC10574373 DOI: 10.3390/molecules28196983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Single-organic-molecule fluorescent probes with double-lock or even multi-lock response modes have attracted the attention of a wide range of researchers. The number of corresponding reports has rapidly increased in recent years. The effective application of the multi-lock response mode single-molecule fluorescent probe has improved the comprehensive understanding of the related targets' functions or influences in pathologic processes. Building a highly efficient functional single-molecule fluorescent probe would benefit the diagnosis and treatment of corresponding diseases. Here, we conducted a theoretical analysis of the synthesizing and sensing mechanism of this kind of functional single-molecule fluorescent probe, thereby guiding the design and building of new efficient probes. In this work, we discuss in detail the electronic structure, electron excitation, and fluorescent character of a recently developed single-molecule fluorescent probe, which could achieve the discrimination and profiling of spontaneous reactive oxygen species (ROS, •OH, and HClO) simultaneously. The theoretical results provide insights that will help develop new tools for fluorescent diagnosis in biological and medical fields.
Collapse
Affiliation(s)
| | | | | | - Yongjin Peng
- Modern Industry School of Health Management, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
21
|
Tang Y, Li Y, Wang Z, Huang W, Fan Q, Liu B. In Situ Noninvasive Observation of Nitric Oxide Fluctuation in SARS-CoV-2 Infection In Vivo by Organic Near-Infrared-II Fluorescent Molecular Nanoprobes. ACS NANO 2023; 17:18299-18307. [PMID: 37712857 DOI: 10.1021/acsnano.3c05410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The pathogenesis understanding of SARS-CoV-2 infection is crucial to prevent the rampant spread of COVID-19 and its contribution to deterioration in health, even death. Nitric oxide (NO), a crucial molecule involved in signal transduction and cytotoxicity, is a possible key regulator in the occurrence and development of COVID-19. However, understanding the pathogenesis of NO in SARS-CoV-2 infection is still in its infancy due to the lack of suitable in situ monitoring probes of NO fluctuation in the complex SARS-CoV-2 infection environment in deep lung tissues. Herein, we developed an activatable near-infrared-II fluorescent molecular nanoprobe (OSNP) that uncages high-resolution and deep-tissue-penetrating near-infrared-II fluorescence signal in specific response to NO for in situ and noninvasive visualization of NO fluctuation in a SARS-CoV-2 infection mouse model in lung tissues. In vivo visualization revealed that the NO level is a positive relationship with SARS-CoV-2 infection progress. With the assistance of immuno-histochemical analyses, we uncovered the NO-involved pathological mechanism, that being the improved NO level is associated with an increase in inducible NO synthase rather than endothelial NO synthase. Our study not only provides the example of a near-infrared-II fluorescent imaging of NO in SARS-CoV-2 infection but also provides opportunities to uncover tunderlying pathomechanism of NO for SARS-Cov-2 infections.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuanyuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
22
|
Li C, Zhou S, Chen J, Jiang X. Fluorescence Imaging of Inflammation with Optical Probes. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:495-508. [PMID: 39473573 PMCID: PMC11503926 DOI: 10.1021/cbmi.3c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 11/08/2024]
Abstract
Inflammation plays an important role in the occurrence and development of disease; dysregulation of inflammatory progression often leads to disease such as tissue sclerosis, cancers, stroke, etc. Optical imaging technology, due to its higher sensitivity and resolution, can provide finer images for the observation of inflammation. Many optical probes have been developed as contrast agents for optical imaging techniques in different diseases. In this review, we summarize the recent advances of optical probe and imaging methods for imaging inflammation in different organs, such as brain, liver, lung, kidney, intestine, etc. Finally, we discuss the opportunities and challenges of optical probes used in the clinic for inflammation monitoring and prospect their future development in disease detection.
Collapse
Affiliation(s)
| | | | - Jian Chen
- MOE Key Laboratory of High
Performance Polymer Materials and Technology and Department of Polymer
Science and Engineering, College of Chemistry and Chemical Engineering,
Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, China
| | - Xiqun Jiang
- MOE Key Laboratory of High
Performance Polymer Materials and Technology and Department of Polymer
Science and Engineering, College of Chemistry and Chemical Engineering,
Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Zheng B, Tian Y, Liu S, Yang J, Wu F, Xiong H. Non-Solvatochromic Cell Membrane-Targeted NIR Fluorescent Probe for Visualization of Polarity Abnormality in Drug-Induced Liver Injury Mice. Anal Chem 2023; 95:12054-12061. [PMID: 37528071 DOI: 10.1021/acs.analchem.3c02005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Noninvasive visualization of liver polarity by using fluorescence imaging technology is helpful to better understand drug-induced liver injury (DILI). However, cell membrane-targeted polarity-sensitive near-infrared (NIR) fluorescent probes are still scarce. Herein, we report a non-solvatochromic cell membrane-targeted NIR small molecular probe (N-BPM-C10) for monitoring the polarity changes on cell membranes in living cells and in vivo. N-BPM-C10 exhibits polarity-dependent fluorescence around 655 nm without an obvious solvatochromic effect, which endows it with good capability for the in vivo imaging study. Moreover, it can rapidly and selectively light up the cell membranes as well as distinguish tumor cells from normal cells due to its excellent polarity-sensitive ability. More importantly, N-BPM-C10 has been successfully applied to visualize liver polarity changes in vivo, revealing the reduction of liver polarity in DILI mice. We believe that N-BPM-C10 provides a new way for the diagnosis of DILI.
Collapse
Affiliation(s)
- Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Jiao Y, Dong X, Ran X, Deng Q, Xiao H, Wang Z, Zhang T. Theoretical characterization of two-photon fluorescent probes for nitric oxide detection: sensing mechanism, photophysical properties and protonation effects. Phys Chem Chem Phys 2023; 25:19932-19942. [PMID: 37458714 DOI: 10.1039/d3cp01091k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Nitric oxide (NO) is an important signal molecule in biological systems and is correlated with many physiological processes and pathological diseases. To date, numerous fluorescent probes based on o-diamino aromatics have been designed and synthesized for NO detection utilizing the principle of photoinduced electron transfer (PET). However, the underlying PET mechanism has rarely been validated, and a systematic computational study on the photophysical properties is urgently desired. In this study, we used a theoretical protocol to comparatively investigate the sensing mechanism, photophysical properties and protonation effects of two emblematic probes NINO and PYSNO in aqueous solution, which combines a polarizable continuum model (PCM), time-dependent density functional theory (TD-DFT) and thermal vibration correlation function formalism (TVCF). Our findings reveal that the weak emission of NINO is due to activated PET with negative driving energy and blocked fluorescence with significant charge separation. In contrast, the poor luminescence of PYSNO is caused by the facilitated non-radiative dissipation, even though the fluorescence emission remains unobstructed. Although NINO has been successfully used in two-photon microscopy for detecting NO, we suggest that PYSNO possesses a superior two-photon absorption (TPA) cross section in the near-infrared region. The protonation effects suggest that both probes can function effectively in practical acidic lysosomal environments. Our study opens a new avenue for understanding the mechanism and predicting the properties of two-photon fluorescent probes for NO detection, thus aiding the rational design of efficient fluorescent sensors.
Collapse
Affiliation(s)
- Yawen Jiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Xiaoxu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Qiyun Deng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
25
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Li X, Chen H, Wang Y, Chen H, Gao Y. BODIPY-Based NO Probe for Macrophage-Targeted Immunotherapy Response Monitoring. Anal Chem 2023; 95:7320-7328. [PMID: 37113062 DOI: 10.1021/acs.analchem.3c00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Precise and rapid detection of immune responses is critical for timely therapeutic regimen adjustment. Immunomodulation of tumor-associated macrophages (TAMs) from a protumorigenic phenotype (M2) to an antitumorigenic phenotype (M1) is crucial in macrophage-targeted immunotherapy. Herein, we developed a boron dipyrromethene (BODIPY)-based fluorescence probe BDP3 to detect the immune responses after immunotherapy by monitoring the nitric oxide (NO) released by M1 TAMs. With an aromatic primary monoamine structure and a p-methoxyanilin electron donor in the meso-position, BDP3 not only specifically activates stable and sensitive fluorescence by NO via a photoinduced electron transfer (PET) process but also achieves a long emission wavelength for efficient in vitro and in vivo imaging. Such NO-induced fluorescence signals of BDP3 are validated to correlate well with the phenotypes of TAMs detected in macrophage cell lines and tumor tissues. The distinct sensing effects toward two types of clinically used immunotherapeutic drugs further confirm the ability of BDP3 for specific monitoring of the M1/M2 switch in response to the macrophage-targeted immunotherapy. By virtue of good biocompatibility and appropriate tumor retention time, BDP3 could be a potential fluorescent probe for noninvasive evaluation of the immunotherapeutic efficacy of macrophage-targeted immunotherapy in living animals.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Hui Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Wang Z, Han D, Wang H, Zheng M, Xu Y, Zhang H. Organic Semiconducting Nanoparticles for Biosensor: A Review. BIOSENSORS 2023; 13:bios13040494. [PMID: 37185569 PMCID: PMC10136359 DOI: 10.3390/bios13040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles. However, there are still some problems that need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review, based on the structure and design strategies of OSNs, we introduce various types of OSNs-based biosensors with functional groups used as biosensors and discuss their applications in both in vitro and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-based biosensors. This review provides a theoretical scaffold for the design of high-performance OSNs-based biosensors and highlights important trends and future directions for their development and application.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Meng Zheng
- R&D Center of Polymer Materials, Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd. (HWSTI), Qingdao Haiwan Chemistry Co., Ltd. (QHCC), Qingdao, 266061, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
28
|
Xiao P, Liang M, Yang S, Sun Y, Li J, Gu Z, Zhang L, Fan Q, Jiang X, Wu W. A ratiometric near-infrared fluorescence/photoacoustic dual-modal probe with strong donor dithienopyrrole for in vivo nitric oxide detection. Biomaterials 2023; 294:121993. [PMID: 36628889 DOI: 10.1016/j.biomaterials.2023.121993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Integrating the imaging techniques of near-infrared fluorescence (NIRF) and photoacoustic (PA) can make up for each other and provide more useful medical information. Ratiometric imaging activated by disease-associated biomarkers can further augment imaging specificity. However, very few studies have employed the NIRF/PA dual-modal ratiometric imaging to improve the accuracy and specificity of disease diagnosis to date. In this paper, we present the synthesis of a nitric oxide (NO)-activated ratiometric NIRF/PA dual-modal nanoprobe RAPNP for in vivo NO imaging. The ratiometric imaging function was achieved jointly by a NO/acidity-responsive molecule DTP-BTDA and a nonresponsive fluorophore DTP-BBTD. In these fluorophores, the dithienopyrrole (DTP) moiety had strong electron-donating ability and imparted strong intramolecular charge transfer and relatively long emission wavelengths. The BTDA moiety in DTP-BTDA could be rapidly oxidized by NO under weak acidic environments, achieving the NIRF and PA signal activation. By using RAPNP as a contrast agent, we achieved the ratiometric detection of the endogenous NO in inflammatory bowel disease by NIRF/PA dual-modal imaging. This work provides the first case of the NIRF/PA dual-signal ratiometric probe for the real-time detection of NO in vivo.
Collapse
Affiliation(s)
- Panpan Xiao
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengke Liang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuo Yang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Sun
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jia Li
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhewei Gu
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ling'e Zhang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China.
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wei Wu
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Wang Z, Ma J, Li C, Zhang H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. BIOSENSORS 2023; 13:159. [PMID: 36831925 PMCID: PMC9953538 DOI: 10.3390/bios13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.
Collapse
|
30
|
Lin XY, Sun SH, Liu YT, Shi QQ, Lv JJ, Peng YJ. Thiophene and diaminobenzo- (1,2,5-thiadiazol)- based DAD-type near-infrared fluorescent probe for nitric oxide: A theoretical research. Front Chem 2023; 10:990979. [PMID: 36700081 PMCID: PMC9870051 DOI: 10.3389/fchem.2022.990979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
A near-infrared fluorescent probe (LS-NO) for the real-time detection of nitric oxide (NO) in inflammatory bowel disease (IBD) was developed recently. The probe used oligoglycol morpholine-functionalized thiophene as strong electron donors and diaminobenzene (1,2,5-thiadiazole) as a weak electron acceptor and NO trapping group. It could detect exogenous and endogenous NO in the lysosomes of living cells with high sensitivity and specificity. To further understand the fluorescent mechanism and character of the probes LS-NO and LS-TZ (after the reaction of the probe LS-NO with NO), the electron transfer in the excitation and emitting process within the model molecules DAD-NO and DAD-TZ was analyzed in detail under the density functional theory. The calculation results indicated the transformation from diaminobenzene (1,2,5-thiadiazole) as a weak electron acceptor to triazolo-benzo-(1,2,5-thiadiazole) as a strong electron acceptor made LS-NO an effective "off-on" near-infrared NO fluorescent probe.
Collapse
Affiliation(s)
- X. Y. Lin
- College of Public Health, Jinzhou Medical University, Jinzhou, China
| | - S. H. Sun
- College of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Y. T. Liu
- College of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Q. Q. Shi
- College of Public Health, Jinzhou Medical University, Jinzhou, China
| | - J. J. Lv
- College of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Y. J. Peng
- College of Bio informational Engineering, Jinzhou Medical University, Jinzhou, China
- College of Physics, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Chen Z, Hu Y, Ma L, Zhang Z, Liu C. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
32
|
Wang W, Wu Y, Wang Y, Wang R, Deng C, Yi L, Wang L, He M, Zhou W, Xie Y, Jin Q, Chen Y, Gao T, Zhang L, Xie M. Orally Administrable Aggregation-Induced Emission-Based Bionic Probe for Imaging and Ameliorating Dextran Sulfate Sodium-Induced Inflammatory Bowel Diseases. Adv Healthc Mater 2022; 12:e2202420. [PMID: 36575111 DOI: 10.1002/adhm.202202420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/12/2022] [Indexed: 12/29/2022]
Abstract
As macrophage infiltration is significantly related to the progression of inflammatory bowel disease (IBD), monitoring the macrophages is a valuable strategy for IBD diagnosis. However, owing to the harsh physiological environment of the gastrointestinal tract and enzymatic degradation, the development of orally administrable imaging probes for tracking macrophages remains a considerable challenge. Accordingly, herein, an orally administrable aggregation-induced emission biomimetic probe (HBTTPIP/β-glucan particles [GPs]) is developed for tracing macrophages; HBTTPIP/GPs can diagnose and alleviate dextran sulfate sodium (DSS)-induced colonic inflammation and self-report the treatment efficiency. The fluorophore HBTTPIP can effectively aggregate in GPs, restricting intramolecular rotation and activating the fluorescence of HBTTPIP. After being orally administrated, HBTTPIP/GPs are phagocytosed by intestinal macrophages, which then migrate to colonic lesions, enabling non-invasive monitoring of the severity of IBD via in vivo fluorescence imaging. Notably, oral HBTTPIP/GPs ameliorate DSS-induced IBD by inhibiting the expressions of pro-inflammatory factors and improving colonic mucosal barrier function. Furthermore, these HBTTPIP/GPs realize self-feedback of the therapeutic effects of GPs on DSS-induced colitis. The oral biomimetic probe HBTTPIP/GPs reported herein provide a novel theranostic platform for IBD, integrating non-invasive diagnosis of IBD in situ and the corresponding treatment.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ya Wu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
33
|
Cao W, Zhu Y, Wu F, Tian Y, Chen Z, Xu W, Liu S, Liu T, Xiong H. Three Birds with One Stone: Acceptor Engineering of Hemicyanine Dye with NIR-II Emission for Synergistic Photodynamic and Photothermal Anticancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204851. [PMID: 36300919 DOI: 10.1002/smll.202204851] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
It is challenging to develop a near-infrared (NIR) small molecular photosensitizer for synergistic phototherapy in deep tissues. Herein, first, a heavy-atom-free NIR hemicyanine photosensitizer (BHcy) for 808 nm light-mediated synergistic photodynamic therapy/photothermal therapy (PDT/PTT) anticancer therapy by leveraging the acceptor engineering strategy is reported. This strategy endows BHcy with a more planar and larger π-conjugated structure, resulting in long NIR absorption/emission at 770/915-1200 nm as well as enhanced singlet oxygen (1 O2 ) generation ability and photothermal effect, which is ascribed to the reduced energy levels of excited singlet/triplet states and the promoted intersystem crossing process. Notably, BHcy-based nanoparticles (BHcy-NPs) exhibit efficient 1 O2 yield (12.9%) and high photothermal conversion efficiency (55.1%). More importantly, BHcy-NPs are able to significantly kill cancer cells by destroying main organelles and inhibit tumor growth in vivo after a single irradiation. Overall, this study provides a strategy to design new heavy-atom-free PDT/PTT agents for potential clinical applications.
Collapse
Affiliation(s)
- Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tingting Liu
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First, Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Xu W, Liu S, Chen Z, Wu F, Cao W, Tian Y, Xiong H. Bichromatic Imaging with Hemicyanine Fluorophores Enables Simultaneous Visualization of Non-alcoholic Fatty Liver Disease and Metastatic Intestinal Cancer. Anal Chem 2022; 94:13556-13565. [PMID: 36124440 DOI: 10.1021/acs.analchem.2c03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Simultaneous detection of different diseases via a single fluorophore is challenging. We herein report a bichromatic fluorophore named Cy-914 for the simultaneous diagnosis of non-alcoholic fatty liver disease (NAFLD) and metastatic intestinal cancer by leveraging its NIR-I/NIR-II dual-color imaging capability. Cy-914 with a pKa of 6.98 exhibits high sensitivity to pH and viscosity, showing turn-on NIR-I fluorescence at 795 nm in an acidic tumor microenvironment, meanwhile displaying intense NIR-II fluorescence at 914/1030 nm under neutral to slightly basic viscous conditions. Notably, Cy-914 could sensitively and noninvasively monitor viscosity variations in the progression of NAFLD. More importantly, it was able to simultaneously visualize NAFLD (ex/em = 808/1000-1700 nm) and intestinal metastases (ex/em = 570/810-875 nm) in two independent channels without spectral cross interference after topical spraying, further improving fluorescence-guided surgery of tiny metastases less than 3 mm. This strategy may provide an understanding for developing multi-color fluorophores for multi-disease diagnosis.
Collapse
Affiliation(s)
- Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Tian Y, Liu S, Cao W, Wu P, Chen Z, Xiong H. H 2O 2-Activated NIR-II Fluorescent Probe with a Large Stokes Shift for High-Contrast Imaging in Drug-Induced Liver Injury Mice. Anal Chem 2022; 94:11321-11328. [PMID: 35938413 DOI: 10.1021/acs.analchem.2c02052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-induced liver injury (DILI) is the most common clinical adverse drug reaction, which is closely associated with the oxidative stress caused by overproduced reactive oxygen species. Hepatic H2O2, as an important biomarker of DILI, plays a crucial role in the progression of DILI. However, there remains a challenge to develop H2O2-activatable second near-infrared (NIR-II, 1000-1700 nm) small molecular probes with both a large Stokes shift and a long emission wavelength beyond 950 nm. Herein, we developed an activatable NIR-II fluorescent probe (IR-990) with an acceptor-π-acceptor (A-π-A) skeleton for real-time detection of H2O2 in vivo. In the presence of H2O2, nonfluorescent probe IR-990 was successfully unlocked by generating a donor-π-acceptor (D-π-A) structure and switched on intense NIR-II fluorescence, exhibiting a peak emission wavelength at 990 nm and a large Stokes shift of 200 nm. Moreover, it was able to detect H2O2 with high sensitivity and selectivity in vitro (LOD = 0.59 μM) and monitor the behavior of endogenous H2O2 in the HepG2 cell model of DILI for the first time. Notably, probe IR-990 was successfully applied in real-time imaging of endogenous H2O2 generation in the DILI mouse model, showing a high signal-to-background ratio of 11.3/1. We envision that IR-990 holds great potential as a powerful diagnosis tool for real-time visualization of H2O2 in vivo and revealing the mechanism of DILI in the future.
Collapse
Affiliation(s)
- Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
He Z, Liu D, Liu Y, Li X, Shi W, Ma H. Golgi-Targeted Fluorescent Probe for Imaging NO in Alzheimer's Disease. Anal Chem 2022; 94:10256-10262. [PMID: 35815650 DOI: 10.1021/acs.analchem.2c01885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a crucial neurotransmitter participating in many biological processes via nitrosylation reaction. NO produced in diverse subcellular regions also regulates the function of cells in different manners. A Golgi apparatus is rich in nitric oxide synthase and may serve as a potential therapeutic target for Alzheimer's disease (AD). However, due to the lack of an effective tool, it is difficult to reveal the relationship between Golgi-NO and AD. Herein, we report Golgi-NO as the first Golgi-targeted fluorescent probe for sensing and imaging NO in the Golgi apparatus. The probe is designed and synthesized by incorporating 4-sulfamoylphenylamide as a Golgi-targeted moiety to 6-carboxyrhodamine B, generating a fluorophore of Golgi-RhB with modifiable carboxyl, which is then combined with the NO recognition moiety of o-diaminobenzene. The probe shows superior analytical performance including accurate Golgi-targeted ability and high selectivity for NO. Moreover, using the probe, we disclose a significant increase of NO in Golgi apparatus in the AD model. This study provides a competent tool for studying the function and nitrosylation of NO in the Golgi apparatus in related diseases.
Collapse
Affiliation(s)
- Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Fukumoto Y, Umeno T, Kuramochi H, Hamada K, Matsumoto S, Suzuki N, Usui K, Mizutani A, Karasawa S. Acid responsiveness of emissive morpholinyl aminoquinolines and their use for cell fluorescence imaging. Org Biomol Chem 2022; 20:4342-4351. [PMID: 35575175 DOI: 10.1039/d2ob00546h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we report emissive aminoquinoline derivatives (TFMAQ) containing alkylmorpholine and arylmorpholine groups and their photophysical properties, acid-responsiveness, and organelle targeting. The alkylmorpholine group is well-known to favour accumulation in lysosomes and be acid-responsive, but, counterintuitively, the TFMAQ derivatives containing ethylmorpholine groups showed limited accumulation in lysosomes and, instead, preferential accumulation in lipid droplets. The findings reported here will aid the development of organelle/tissue specific dyes for cell imaging and diagnosis.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Hina Kuramochi
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Koichi Hamada
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Shota Matsumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Noriko Suzuki
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Kazuteru Usui
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Akihiro Mizutani
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Satoru Karasawa
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
38
|
Liu YL, Huang H, Peng YJ. Fluorescent probe for simultaneous detection of human serum albumin and sulfite: A theoretical analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Mi C, Guan M, Zhang X, Yang L, Wu S, Yang Z, Guo Z, Liao J, Zhou J, Lin F, Ma E, Jin D, Yuan X. High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mice. NANO LETTERS 2022; 22:2793-2800. [PMID: 35324206 DOI: 10.1021/acs.nanolett.1c04909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional biomedical imaging modalities, including endoscopy, X-rays, and magnetic resonance, are invasive and insufficient in spatial and temporal resolutions for gastrointestinal (GI) tract imaging to guide prognosis and therapy. Here we report a noninvasive method based on lanthanide-doped nanocrystals with ∼1530 nm fluorescence in the near-infrared-IIb window (NIR-IIb, 1500-1700 nm). The rational design of nanocrystals have led to an absolute quantum yield (QY) up to 48.6%. Further benefiting from the minimized scattering through the NIR-IIb window, we enhanced the spatial resolution to ∼1 mm in GI tract imaging, which is ∼3 times higher compared with the near-infrared-IIa (NIR-IIa, 1000-1500 nm) method. The approach also realized a high temporal resolution of 8 frames per second; thus the moment of mice intestinal peristalsis can be captured. Furthermore, with a light-sheet imaging system, we demonstrated a three-dimensional (3D) imaging on the GI tract. Moreover, we successfully translated these advances to diagnose inflammatory bowel disease.
Collapse
Affiliation(s)
- Chao Mi
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Guan
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xun Zhang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liu Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sitong Wu
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhichao Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyong Guo
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayan Liao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - En Ma
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dayong Jin
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
40
|
Sarkar S, Shil A, Nandy M, Singha S, Reo YJ, Yang YJ, Ahn KH. Rationally Designed Two-Photon Ratiometric Elastase Probe for Investigating Inflammatory Bowel Disease. Anal Chem 2022; 94:1373-1381. [DOI: 10.1021/acs.analchem.1c04646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Madhurima Nandy
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Subhankar Singha
- Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
41
|
Wang W, He X, Du M, Xie C, Zhou W, Huang W, Fan Q. Organic Fluorophores for 1064 nm Excited NIR-II Fluorescence Imaging. Front Chem 2021; 9:769655. [PMID: 34869217 PMCID: PMC8634436 DOI: 10.3389/fchem.2021.769655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. However, the excitation wavelengths of most NIR-II fluorescence dyes are in the first near-infrared (NIR-I) region, which leads to limited imaging depth and resolution. To address such issue, NIR-II fluorescence dyes with 1,064 nm excitation have been developed and applied for in vivo imaging. Compared with NIR-I wavelength excited dyes, 1,064 nm excited dyes exhibit a higher tissue penetration depth and resolution. The improved performance makes these dyes have much broader imaging applications. In this mini review, we summarize recent advances in 1,064 nm excited NIR-II fluorescence fluorophores for bioimaging. Two kinds of organic fluorophores, small molecule dye and semiconducting polymer (SP), are reviewed. The general properties of these fluorophores are first introduced. Small molecule dyes with different chemical structures for variety of bioimaging applications are then discussed, followed by the introduction of SPs for NIR-II phototheranostics. Finally, the conclusion and future perspective of this field is given.
Collapse
Affiliation(s)
- Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Mingzhi Du
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
42
|
Li X, Wu P, Cao W, Xiong H. Development of pH-activatable fluorescent probes for rapid visualization of metastatic tumours and fluorescence-guided surgery via topical spraying. Chem Commun (Camb) 2021; 57:10636-10639. [PMID: 34581325 DOI: 10.1039/d1cc04408g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pH-activatable aza-BODIPY-based fluorescent probes were developed for rapid cancer visualization and real-time fluorescence-guided surgery by harnessing topical spraying. These probes exhibited good water-solubility, a tunable pKa from 5.0 to 7.9, and stable intense NIR emission at ∼725 nm under acidic conditions. AzaB5 with a pKa value of 6.7 was able to rapidly and clearly visualize pulmonary and abdominal metastatic tumours including tiny metastases less than 2 mm via topical spraying, further improving intraoperative fluorescence-guided resection. We believe that AzaB5 is promising as a powerful tool to rapidly delineate a broad range of malignancies and assist surgical tumour resection.
Collapse
Affiliation(s)
- Xiaoxin Li
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
43
|
Wu P, Zhu Y, Chen L, Tian Y, Xiong H. A Fast-Responsive OFF-ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Anal Chem 2021; 93:13014-13021. [PMID: 34524814 DOI: 10.1021/acs.analchem.1c02831] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune inflammatory disease, and its etiology is closely related to the overproduction of hypochlorous acid (HClO). However, early detection of RA using an activatable near-infrared-II (NIR-II, 1000-1700 nm) fluorescent probe remains challenging. Herein, we first report an "OFF-ON" NIR-II fluorescent probe named PTA (phenothiazine triphenylamine) for imaging HClO in deep-seated early RA. Electron-rich phenothiazine in the core of PTA was utilized as both an HClO-recognition moiety and a precursor of electron acceptors, displaying a typical donor-acceptor-donor structure with excellent NIR-II emission at 936/1237 nm once reacted with HClO. The probe PTA exhibited good water solubility, high photostability, and rapid response capability toward HClO within 30 s. Moreover, it was able to sensitively and specifically detect exogenous and endogenous HClO in living cells in both visible and NIR-II windows. Notably, PTA enabled the sensitive and rapid visualization of HClO generation in an inflammatory RA mouse model, showing a 4.3-fold higher NIR-II fluorescence intensity than that in normal hindlimb joints. These results demonstrate that PTA holds great promise as a robust platform for diagnosis of HOCl-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lulu Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
He S, Zhu J, Xie P, Liu J, Zhang D, Tang J, Ye Y. A novel NIR fluorescent probe for the highly sensitive detection of HNO and its application in bioimaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj04015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “naked-eye” HNO probe based on xanthene was obtained.
Collapse
Affiliation(s)
- Shenwei He
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianming Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyao Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|