1
|
Jin Q, Wang J, Cheng M, Tian Y, Xie Y, Deng J, Xiao H, Wang H, Ni Z, Li M, Li L. Photoelectrochemical transistors based on semiconducting polymers: an emerging technology for future bioelectronics. NANOSCALE 2024; 16:20451-20462. [PMID: 39420725 DOI: 10.1039/d4nr03421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In recent years, organic electrochemical transistors (OECTs) have attracted widespread attention due to their significant advantages such as low-voltage operation, biocompatibility, and compatibility with flexible substrates. Organic photoelectrochemical transistors (OPECTs) are OECTs with photoresponse capabilities that achieve photoresponse and signal amplification in a single device, demonstrating tremendous potential in multifunctional optoelectronic devices. In this mini-review, we briefly introduce the channel materials and operation mechanisms of OECTs/OPECTs. Then different types of OPECTs are discussed depending on their device-architecture-related photoresponse generation. Following this, we summarize recent advances in OPECT applications across various fields including biomedical sciences, optoelectronics, and sensor technologies. Finally, we outline the current challenges and explore future research prospects, aiming at extending their further development and applications.
Collapse
Affiliation(s)
- Qingqing Jin
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Wang
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Miao Cheng
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yue Tian
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yifan Xie
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyang Deng
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongmei Xiao
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenjie Ni
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mengmeng Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
2
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
3
|
Ma Q, Chu W, Nong X, Zhao J, Liu H, Du Q, Sun J, Shen J, Lu SM, Lin M, Huang Y, Xia F. Local Electric Potential-Driven Nanofluidic Ion Transport for Ultrasensitive Biochemical Sensing. ACS NANO 2024; 18:6570-6578. [PMID: 38349220 DOI: 10.1021/acsnano.3c12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target-probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target-probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.
Collapse
Affiliation(s)
- Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Dong H, Wang HY, Xu YT, Zhang X, Chen HY, Xu JJ, Zhao WW. Iontronic Photoelectrochemical Biorecognition Probing. ACS Sens 2024; 9:988-994. [PMID: 38258286 DOI: 10.1021/acssensors.3c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Herein, the first iontronic photoelectrochemical (PEC) biorecognition probing is devised by rational engineering of a dual-functional bioconjugate, i.e., a light-sensitive intercalated structural DNA, as a smart gating module confined within a nanotip, which could respond to both the incident light and biotargets of interest. Light stimulation of the bioconjugate could intensify the negative charge at the nano-orifice to sustain enhanced ionic current. The presence of proteins (e.g., acetylcholinesterase, AChE) or nucleic acids (e.g., microRNA (miR)-10b) could lead to bioconjugate release with altered ionic signaling. The practical applicability of the methodology is confirmed by AChE detection in human serum and miR-10b detection in single cells.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Guo L, Li B, Wong SW, Chen M, Xu Q, Ge L, Kwok HF. Enzyme-catalyzed high-performing reaction with in-situ amplified photocurrent on carbon-functionalized inorganic photoanode for immunosensing. Biosens Bioelectron 2023; 236:115404. [PMID: 37295131 DOI: 10.1016/j.bios.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
An enzyme-catalyzed high-performing reaction with in-situ amplified photocurrent was innovatively designed for the quantitative screening of carcinoembryonic antigen (CEA) in biological fluids by coupling with carbon-functionalized inorganic photoanode. A split-type photoelectrochemical (PEC) immunoassay was initially executed with horseradish peroxidase (HRP)-labeled secondary antibody on the capture antibody-coated microtiter. Then, the photocurrent of carbon-functionalized inorganic photoanode were improved through enzymatic insoluble product. Experimental results revealed that introduction of the outer carbon layer on the inorganic photoactive materials caused the amplifying photocurrent because of the improving light harvesting and separation of photo-generated e-/h+ pairs. Under optimum conditions, the split-type photoelectrochemical immunosensing platform displayed good photocurrent responses within the dynamic range of 0.01 - 80 ng mL-1 CEA, and allowed the detection of CEA as low as a concentration of 3.6 pg mL-1 at the 3Sblank level. The strong attachment of antibodies onto nano label and high-performing photoanode resulted in a good repeatability and intermediate precision down to 9.83%. No significant differences at the 0.05 significance level were encountered in the analysis of six human serum specimens between the developed PEC immunoassay and the commercially available CEA ELISA kits.
Collapse
Affiliation(s)
- Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sin Wa Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Meijuan Chen
- Lab of Antitumor Mechanism Investigation of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingyun Xu
- Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lilin Ge
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Lab of Antitumor Mechanism Investigation of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
6
|
Zhu Y, Ju P, Wang S, Jiang T, Chi J, Zhang S, Zhai X, Lu Z. Bioderived establishment of three-dimensional type-I Ag 2S/ZnIn 2S 4 heterojunction for high-efficacy organic photoelectrochemical transistor biomolecular detection. Anal Chim Acta 2023; 1240:340757. [PMID: 36641158 DOI: 10.1016/j.aca.2022.340757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Advanced optoelectronic devices have attracted extensive interdisciplinary interest but lags far behind in biomolecular detection. The nascent organic photoelectrochemical transistor (OPECT) is expected to become a versatile platform to this end. Herein, using biological derivation of type-I Ag2S/ZnIn2S4 heterojunction, a light-fueled high-efficacy OPECT system with zero-gate-biased operation is successfully developed for biomolecular detection. Exemplified by a sandwich immunocomplexing towards mouse IgG (MIgG) with Ag nanoparticles (Ag NPs) as the label, steering the acidolysis-release of Ag+ toward ZnIn2S4 could induce the in-situ formation of type-I Ag2S/ZnIn2S4 heterojunction, increasing the recombination of light-activated excitons and thus inhibiting the photo-responsibility of ZnIn2S4, as sensitively monitored by the amplified OPECT response. The proposed device could achieve good analytical performance in terms of high specificity and sensitivity, with a detection limit as low as 33.7 fg mL-1. This OPECT device based on bio-induced formation of type-I heterojunction can provide a novel route to biomolecular detection, and offered a new perspective for the optoelectronic sensors to be used in futuristic physiological and pathological detection.
Collapse
Affiliation(s)
- Yuyue Zhu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| | - Shiliang Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Tiantong Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Jingtian Chi
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao, 266100, PR China
| | - Shiqi Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, PR China
| | - Xiaofan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, PR China
| | - Zhaoxia Lu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
7
|
Zhang L, Chen FZ, Sun H, Meng R, Zeng Q, Wang X, Zhou H. Stimulus-Responsive Metal-Organic Framework Signal-Reporting System for Photoelectrochemical and Fluorescent Dual-Mode Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46103-46111. [PMID: 36173115 DOI: 10.1021/acsami.2c14376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dual-mode bioanalysis integrating photoelectrochemical (PEC) and other modes is emerging and allows signal cross-checking for more reliable results. Metal-organic frameworks (MOFs) have been shown to be attractive materials in various biological applications. This work presents the utilization of MOF encapsulation and stimuli-responsive decapsulation for dual-mode PEC and fluorescence (FL) bioanalysis. Photoactive dye methylene violet (MV) was encapsulated in zeolitic imidazolate framework-90 (ZIF-90) to form an MV@ZIF-90 hybrid material, and MV could be released by adenosine triphosphate (ATP)-induced ZIF-90 disintegration. The released MV not only had FL emission but also had a sensitization effect on the ZnIn2S4 (ZnInS) photoanode. Based on the MV-dependent sensitization effect and FL emission characteristic, a dual-mode PEC-FL strategy was established for ATP detection with low detection limits, that is, 3.2 and 4.1 pM for PEC and FL detection, respectively. This study features and will inspire the construction and implementation of smart MOF materials for dual-mode bioanalysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng-Zao Chen
- School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Jiaojiang, Taizhou 318000, China
| | - Haodi Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Runze Meng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingsheng Zeng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinxing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Lu MJ, Li CJ, Ban R, Chen FZ, Hu J, Gao G, Zhou H, Lin P, Zhao WW. Tuning the Surface Molecular Charge of Organic Photoelectrochemical Transistors with Significantly Improved Signal Resolution: A General Strategy toward Sensitive Bioanalysis. ACS Sens 2022; 7:2788-2794. [PMID: 36069701 DOI: 10.1021/acssensors.2c01493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nature makes use of molecular charges to operate specific biological synthesis and reactions. Targeting advanced opto-bioelectronic sensors, organic photoelectrochemical transistors (OPECTs), taking advantage of the light fuel substituting an external gate potential, is now debuting and expected to serve as a universal platform for studying the rich light-biomatter interplay for new bioanalytics. Given the ubiquity of charged biomolecules in nature, molecular charge manipulation should underpin a generic route for innovative OPECT regulation and operation, which nevertheless has remained unachieved. Herein, this work manifests the biological tuning of surface charge toward the OPECT biosensor, which was exemplified by a light-sensitive CdS quantum dot (QD) gate electrode interfaced by a smart DNA superstructure with adenosine triphosphate (ATP) responsiveness. Highly negative-charged supramolecular DNA concatemers were self-assembled via sequential hybridization, and the ATP-triggered disassembly of the DNA concatemers would cause a tandem change of the effective gate voltage and transfer characteristics with significantly improved resolution. The present opto-bioelectronic device translates the events of charged molecules into amplified electrical signals and outlines a generic format for the future exploitation of rich biological tunability and light-biomatter interplay for innovative bioanalytics and beyond.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Gao Y, Li M, Zeng Y, Liu X, Tang D. Tunable Competitive Absorption-Induced Signal-On Photoelectrochemical Immunoassay for Cardiac Troponin I Based on Z-Scheme Metal-Organic Framework Heterojunctions. Anal Chem 2022; 94:13582-13589. [PMID: 36129524 DOI: 10.1021/acs.analchem.2c03263] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently emerged Z-scheme heterostructure-based immunoassays have presented new opportunities for photoelectrochemical (PEC) biosensing development. Here, we described a tunable signal-on PEC biosensor for the detection of cardiac troponin I (cTnI), which exploited a competitive absorption effect between Cu(II) ions and a Zr metal-organic framework (Zr-MOF) constructed on TiO2 nanorods (Cu2+@Zr-MOF@TiO2 NRs). Water-stable Zr-MOF was coated onto TiO2 NRs on fluorine-doped tin oxide to form a Z-scheme heterostructure substrate (Zr-MOF@TiO2 NRs), which exhibited a high photoelectric response. Cu2+@Zr-MOF@TiO2 NRs, constructed by loading Cu(II) ions onto the architecture of Zr-MOF by electrostatic interaction, demonstrated a low background signal. After sandwich immunorecognition within a 96-well plate, H2S, generated by confined alkaline phosphatase on zeolitic imidazolate framework-8, was directed to react with Cu(II) ions to form CuS. This resulted in an in situ change in the photoelectrode and an enhanced photoelectric signal. The developed PEC biosensing platform exhibited high sensitivity and selectivity for the cTnI immunoassay with a detection limit of 8.6 pg/mL. The Z-scheme-based competition absorption modulation of photoelectrochemistry provides a new strategy for general PEC biosensing development.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
10
|
Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosens Bioelectron 2022; 209:114224. [PMID: 35395586 DOI: 10.1016/j.bios.2022.114224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO2 nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17. Formation of the non-conducting DNA layer from the miRNA-17-oriented HCR could decrease the surface capacitance and increase the corresponding fractional potential drop, shifting the transfer curve horizontally to higher gate voltage and thus producing different drain currents. The OPECT biosensor exhibited a linear relationship with the miRNA-17 concentration on the logarithmic axis in the range from 1 pm. to 10 μm with a detection limit of 1 pm. This work not only represented a generic methodology of miRNA detection, but also provided a universal mechanism for the operation of advanced OPECT bioanalytics.
Collapse
|
11
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
12
|
Gao Y, Fang X, Chen D, Ma N, Dai W. Ternary photocatalyst of ZIF-8 nanofilms coupled with AgI nanoparticles seamlessly on ZnO microrods for enhanced visible-light photocatalysis degradation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|