1
|
Zhan L, Huang Y, Wang G. Multi-modal mass spectrometry imaging of a single tissue section. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5074. [PMID: 39017393 DOI: 10.1002/jms.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Mass spectrometry imaging (MSI) was developed to visualize spatial chemical information within tissues, thereby facilitating spatial multi-omic analysis. However, due to the limited spatial information provided by individual modal MSI, correlating various chemical data within tissues remains a significant challenge. In recent years, multimodal MSI has garnered considerable attention due to its ability to visualize the spatial distributions of multiple biomolecules within tissues. Among the strategies employed in this field, multimodal imaging on a single tissue section circumvents multiple issues introduced by integration of images of consecutive tissue sections. In this minireview, we provide an overview of multimodal MSI on a single tissue section, with a particular focus on the use of Matrix-Assisted Laser Desorption/Ionization-MSI for spatial multi-omic investigations that offer a comprehensive and in-depth elucidation of the biological state and activities, aiming to inspire the development of new approaches in this field.
Collapse
Affiliation(s)
- Lingpeng Zhan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yanyi Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Guanbo Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Bao Z, Yu D, Fu J, Gu J, Xu J, Qin L, Hu H, Yang C, Liu W, Chen L, Wu R, Liu H, Xu H, Guo H, Wang L, Zhou Y, Li Q, Wang X. 2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites. Anal Chem 2024; 96:5160-5169. [PMID: 38470972 DOI: 10.1021/acs.analchem.3c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, μm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.
Collapse
Affiliation(s)
- Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Dian Yu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jia Xu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjuan Liu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| |
Collapse
|
5
|
Zhang YX, Zhang YD, Shi YP. Novel Small Molecule Matrix Screening for Simultaneous MALDI Mass Spectrometry Imaging of Multiple Lipids and Phytohormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6762-6771. [PMID: 38478706 DOI: 10.1021/acs.jafc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Most of the traditional matrices cannot simultaneously image multiple lipids and phytohormones, so screening and discovery of novel matrices stand as essential approaches for broadening the application scope of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). In this work, 12 organic small molecule compounds were comprehensively screened and investigated as potential MALDI matrices for simultaneous imaging analysis of various lipids and phytohormones. In the positive ionization mode, p-nitroaniline, m-nitroaniline, and 2-aminoterephthalic acid displayed good performance for the highly sensitive detection of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), and triacylglycerols (TGs). Furthermore, p-nitroaniline possessed excellent characteristics of strong ultraviolet absorption and homogeneous cocrystallization, making it a desirable matrix for MALDI-MSI analysis of eight plant hormones. Compared with conventional matrices (2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and 9-aminoacridine (9-AA), the use of p-nitroaniline resulted in higher ionization efficiency, superior sensitivity, and clearer imaging images in dual polarity mode. Our research offers valuable guidance and new ideas for future endeavors in matrix screening.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Liang Q, Mondal P, Li Q, Maqbool T, Zhao C, Jiang D, Szulczewski GJ, Wijeratne GB. Nitro Indole Derivatives as Novel Dual-Polarity Matrices for MALDI Mass Spectrometry and Imaging with Broad Applications. Anal Chem 2024; 96:1668-1677. [PMID: 38226847 DOI: 10.1021/acs.analchem.3c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A new matrix framework is presented in this study for the improved ionization efficiency of complex mixtures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry/imaging. Five nitro indole (NI) derivatives [3-methyl-4-nitro-1H-indole (3,4-MNI), 3-methyl-6-nitro-1H-indole (3,6-MNI), 2,3-dimethyl-4-nitro-1H-indole (2,3,4-DMNI), 2,3-dimethyl-6-nitro-1H-indole (2,3,6-DMNI), and 4-nitro-1H-indole (4-NI)] were synthesized and shown to produce both positive and negative ions with a broad class of analytes as MALDI matrices. NI matrices were compared to several common matrices, such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxylcinnamic acid (CHCA), sinapinic acid (SA), 1,5-diaminonaphthelene (1,5-DAN), and 9-aminoacridine (9-AA), for the analysis of lipid, peptide, protein, glycan, and perfluorooctanesulfonic acid (PFOS) compounds. 3,4-MNI demonstrated the best performance among the NI matrices. This matrix resulted in reduced ion suppression and better detection sensitivity for complex mixtures, for example, egg lipids/milk proteins/PFOS in tap water, while 2,3,6-DMNI was the best matrix for blueberry tissue imaging. Several important aspects of this work are reported: (1) dual-polarity ion production with NI matrices and complex mixtures; (2) quantitative analysis of PFOS with a LOQ of 0.5 ppb in tap water and 0.05 ppb in MQ water (without solid phase extraction enrichment), with accuracy and precision within 5%; (3) MALDI imaging with 2,3,6-DMNI as a matrix for plant metabolite/lipid identification with ionization enhancement in the negative ion mode m/z 600-900 region; and (4) development of a thin film deposition under/above tissue method for MALDI imaging with a vacuum sublimation matrix on a high-vacuum MALDI instrument.
Collapse
Affiliation(s)
- Qiaoli Liang
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Pritam Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daqian Jiang
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Greg J Szulczewski
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Gayan B Wijeratne
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Ouyang D, Wang C, Zhong C, Lin J, Xu G, Wang G, Lin Z. Organic metal chalcogenide-assisted metabolic molecular diagnosis of central precocious puberty. Chem Sci 2023; 15:278-284. [PMID: 38131069 PMCID: PMC10732007 DOI: 10.1039/d3sc05633c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic analysis in biofluids based on laser desorption/ionization mass spectrometry (LDI-MS), featuring rapidity, simplicity, small sample volume and high throughput, is expected to be a powerful diagnostic tool. Nevertheless, the signals of most metabolic biomarkers obtained by matrix-assisted LDI-MS are too limited to achieve a highly accurate diagnosis due to serious background interference. To address this issue, nanomaterials have been frequently adopted in LDI-MS as substrates. However, the "trial and error" approach still dominates the development of new substrates. Therefore, rational design of novel LDI-MS substrates showing high desorption/ionization efficiency and no background interference is extremely desired. Herein, four few-layered organic metal chalcogenides (OMCs) were precisely designed and for the first time investigated as substrates in LDI-MS, which allowed a favorable internal energy and charge transfer by changing the functional groups of organic ligands and metal nodes. As a result, the optimized OMC-assisted platform satisfyingly enhanced the mass signal by ≈10 000 fold in detecting typical metabolites and successfully detected different saccharides. In addition, a high accuracy diagnosis of central precocious puberty (CPP) with potential biomarkers of 12 metabolites was realized. This work is not only expected to provide a universal detection tool for large-scale clinical diagnosis, but also provides an idea for the design and selection of LDI-MS substrates.
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital Fuzhou 350003 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Guane Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
8
|
Tang W, Li Z, Zou Y, Liao J, Li B. A multimodal pipeline for image correction and registration of mass spectrometry imaging with microscopy. Anal Chim Acta 2023; 1283:341969. [PMID: 37977791 DOI: 10.1016/j.aca.2023.341969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and histology plays a pivotal role in advancing our understanding of complex heterogeneous tissues, which provides a comprehensive description of biological tissue with both wide molecule coverage and high lateral resolution. Herein, we proposed a novel strategy for the correction and registration of MALDI MSI data with hematoxylin & eosin (H&E) staining images. To overcome the challenges of discrepancies in spatial resolution towards the unification of the two imaging modalities, a deep learning-based interpolation algorithm for MALDI MSI data was constructed, which enables spatial coherence and the following orientation matching between images. Coupled with the affine transformation (AT) and the subsequent moving least squares algorithm, the two types of images from one rat brain tissue section were aligned automatically with high accuracy. Moreover, we demonstrated the practicality of the developed pipeline by projecting it to a rat cerebral ischemia-reperfusion injury model, which would help decipher the link between molecular metabolism and pathological interpretation towards microregion. This new approach offers the chance for other types of bioimaging to boost the field of multimodal image fusion.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhen Li
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Liao
- School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Yousefi-Taemeh M, Duli E, Dabija LG, Lemaire M, Ifa DR. Sublimation application of 5-chloro-2-mercaptobenzothiazole matrix for matrix-assisted laser desorption/ionization mass spectrometry imaging of mouse kidney. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9594. [PMID: 37430447 DOI: 10.1002/rcm.9594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
RATIONALE Sublimation is a solvent-free technique used to apply a uniform matrix coating over a large sample plate, improving the matrix's purity and enhancing the analyte signal. Although the 5-chloro-2-mercaptobenzothiazole (CMBT) matrix was introduced years ago, there are no reports of its application via sublimation. We investigated the experimental parameters that are optimal for CMBT matrix sublimation on mouse kidney samples. We also evaluated the stability of the sublimed CMBT matrix under a vacuum environment. Using kidney samples prepared with a sublimated CMBT matrix, we conducted matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) analysis of specific phospholipids (phosphatidylcholine and phosphatidylglycerol in the positive ion mode and phosphatidylinositol in the negative ion mode). We also explored various spatial resolutions (50, 20, and 10 μm) and performed sequential MALDI-hematoxylin and eosin (H&E) staining. METHODS The CMBT matrix was applied to kidney samples using a sublimation apparatus connected to a vacuum pump to achieve a pressure of 0.05 Torr. The matrix was then subjected to different temperatures and sublimation times to determine the optimal conditions for matrix application. Subsequently, a Q-Exactive mass spectrometer equipped with a Spectroglyph MALDI ion source was employed for MALDI-MSI experiments. Standard protocols were followed for H&E staining after MALDI analysis. RESULTS A matrix thickness of 0.15 mg/cm2 yielded high-quality images. The sublimated matrix exhibited minimal loss after approximately 20 h of exposure to a vacuum of 7 Torr, indicating its stability under these conditions. Ion images were successfully obtained at spatial resolutions of 50, 20, and 10 μm. Furthermore, orthogonal histological information was obtained through sequential MALDI-H&E staining. CONCLUSIONS We demonstrate that samples prepared for MALDI-MSI using sublimation to apply the CMBT matrix yield high-quality mass spectrometric images of mouse kidney sections. We also provide data for the impact of various experimental parameters on image quality (e.g., temperature, time, matrix thickness, and spatial resolution).
Collapse
Affiliation(s)
| | - Ergi Duli
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | - Mathieu Lemaire
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Demian R Ifa
- Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
11
|
Tang W, Zhang Y, Li P, Li B. Evaluation of Intestinal Drug Absorption and Interaction Using Quadruple Single-Pass Intestinal Perfusion Coupled with Mass Spectrometry Imaging. Anal Chem 2023; 95:3218-3227. [PMID: 36725694 DOI: 10.1021/acs.analchem.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Visualization and characterization of the intestinal membrane transporter-mediated drug absorption and interaction are challenging due to the complex physical and chemical environment. In this work, an integrated strategy was developed for in situ visualization and assessment of the drug absorption and interaction in rat intestines using quadruple single-pass intestinal perfusion (Q-SPIP) technique coupled with matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). Compared with the traditional SPIP only available for perfusion of one single intestinal segment, the Q-SPIP model can simultaneously perfuse four individual segments of each rat intestine (duodenum, jejunum, ileum, and colon), enabling to obtain rich data from one rat. Subsequently, the drug distribution and absorption in rat intestinal tissue were accurately visualized by using an optimized MALDI MSI approach. The utility and versatility of this strategy were demonstrated via the examination of P-glycoprotein (P-gp)-mediated intestinal absorption of berberine (BBR) and its combination with natural products possessing inhibitory potency against P-gp. The change in the spatial distribution of BBR was resolved, and MALDI results showed that the signal intensity of BBR in defined regions was enhanced following coperfusion with P-gp inhibitors. However, enhanced absorption of BBR after coperfusion with the P-gp inhibitor was not observed in the ulcerative colitis rat model, which may be due to the damage to the intestinal barrier. This study exemplifies the availability and utility of Q-SPIP coupled with MALDI MSI in the examination of transporter-mediated intestinal drug absorption and interaction for fundamental inquiries into the preclinical prediction of oral absorption and drug interaction potential.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuejie Zhang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Gao C, Wang Y, Zhang H, Hang W. Titania Nanosheet as a Matrix for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis and Imaging. Anal Chem 2023; 95:650-658. [PMID: 36577518 DOI: 10.1021/acs.analchem.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Surface-assisted laser desorption/ionization (SALDI) acts as a soft desorption/ionization technique, which has been widely recognized in small-molecule analysis owing to eliminating the requirement of the organic matrix. Herein, titania nanosheets (TiO2 NSs) were applied as novel substrates for simultaneous analysis and imaging of low-mass molecules and lipid species. A wide variety of representative analytes containing amino acids, bases, drugs, peptides, endogenous small molecules, and saccharide-spiked urine were examined by the TiO2 NS-assisted LDI mass spectrometry (MS). Compared with conventional organic matrices and substrates [Ag nanoparticles (NPs), Au NPs, carbon nanotubes, carbon NPs, CeO2 microparticles, and P25 TiO2], the TiO2 NS-assisted LDI MS method shows higher sensitivity and less spectral interference. Repeatability was evaluated with batch-to-batch relative standard deviations for 5-hydroxytryptophan, glucose-spiked urine, and glucose with addition of internal standard, which were 17.4, 14.9, and 2.8%, respectively. The TiO2 NS-assisted LDI MS method also allows the determination of blood glucose levels in mouse serum with a linear range of 0.5-10 mM. Owing to the nanoscale size and uniform deposition of the TiO2 NS matrix, spatial distributions of 16 endogenous small molecules and 16 lipid species from the horizontal section of the mouse brain tissue can be visualized at a 50 μm spatial resolution. These successful applications confirm that the TiO2-assisted LDI MS method has promising prospects in the field of life science.
Collapse
Affiliation(s)
- Chaohong Gao
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yubing Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Zhang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ma Z, Yuan J, Xu J, Li L, Tang C, Chang L, Quinn RJ, Qin L, Liu J, Ye Y. Quaternized Acridine Maleimide MALDI Probe Enables Mass Spectrometry Imaging of Thiols. Anal Chem 2022; 94:14917-14924. [PMID: 36269144 DOI: 10.1021/acs.analchem.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiols are essential metabolites associated with redox imbalances and metabolic disorders in diseases. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) facilitates imaging of metabolites in tissue, but imaging of thiols remains challenging. Here we developed a method to visualize thiols using a stable isotope-labeled (SIL) MALDI probe, a mixture of unlabeled and deuterium-labeled reagents that provided adduct signals at [M]+ and [M + 3]+, to identify endogenous thiols in tissue. A series of MALDI probe candidates were rationally designed, and the structure-effect relationships were determined. First, the reactivity of different warheads toward the thiol group was evaluated, and maleimide was the best for in situ derivatization. Second, an acridine fragment showed the best improvement in MS responses. Third, a permanent charge was introduced for detection improvement in the positive mode. Finally, the hydrogens of methyl group were replaced by deuterium atoms, obtaining the novel SIL MALDI probe and thus facilitating significantly the annotation of thiols. The finally obtained D0/D3-9-((2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)carbamoyl)-10-methylacridin-10-ium iodide (D0/D3-MaI-MADA) enabled direct MSI of thiols in the fine structures of human liver tumors without a reduction procedure. Our work built a SIL MALDI probe for the first time and provided a strategy for the rational design of MALDI probes.
Collapse
Affiliation(s)
- Zhenghua Ma
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| | - Lizhi Li
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Chang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Jin Z, Liu M, Huang X, Zhang X, Qu Z, Zhu JJ, Min Q. Top-Down Rational Engineering of Heteroatom-Doped Graphene Quantum Dots for Laser Desorption/Ionization Mass Spectrometry Detection and Imaging of Small Biomolecules. Anal Chem 2022; 94:7609-7618. [PMID: 35575691 DOI: 10.1021/acs.analchem.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is widely applied in mapping macrobiomolecules in tissues, but it is still limited in profiling low-molecular-weight (MW) compounds (typically metabolites) due to ion interference and suppression by organic matrices. Here, we present a versatile "top-down" strategy for rational engineering of carbon material-based matrices, by which heteroatom-doped graphene quantum dots (HGQDs) were manufactured for LDI MS detection and imaging of small biomolecules. The HGQDs derived from parent materials inherited the π-conjugated networks and doping sites for promoting energy transfer and negative ion generation, while their extremely small size guaranteed the matrix uniformity and signal reproducibility in LDI MSI. Compared to other HGQDs, nitrogen-doped graphene quantum dots (NGQDs) exhibited superior capability of assisting LDI of various small molecules, including amino acids, fatty acids, saccharides, small peptides, nucleobases, anticancer drugs, and bisphenol pollutants. Density functional theory simulations also corroborated that the LDI efficiency was markedly raised by the proton-capturing pyridinic nitrogen species and compromised by the electron-deficient boron dopants. NGQDs-assisted LDI MS further enabled label-free investigation on enzyme kinetics using an ordinary short peptide as the substrate. Moreover, due to the high salt tolerance and signal reproducibility, the proposed negative-ion NGQDs-assisted LDI MSI was able to reveal the abundance and distribution of low-MW species in rat brain tissue and achieved the imaging of low-MW lipids in coronally sectioned rat brains subjected to traumatic brain injury. Our work offers a new route for customizing nanomaterial matrices toward LDI MSI of small biomolecules in biomedical and pathological research.
Collapse
Affiliation(s)
- Zehui Jin
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Meng Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaodan Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Guo S, Li K, Chen Y, Li B. Unraveling the drug distribution in brain enabled by MALDI MS imaging with laser-assisted chemical transfer. Acta Pharm Sin B 2022; 12:2120-2126. [PMID: 35847487 PMCID: PMC9279630 DOI: 10.1016/j.apsb.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate localization of central nervous system (CNS) drug distribution in the brain is quite challenging to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), owing to the ionization competition/suppression of highly abundant endogenous biomolecules and MALDI matrix. Herein, we developed a highly efficient sample preparation technique, laser-assisted chemical transfer (LACT), to enhance the detection sensitivity of CNS drugs in brain tissues. A focused diode laser source transilluminated the tissue slide coated with α-cyano-4-hydroxycinnamic acid, an optimal matrix to highly absorb the laser radiation at 405 nm, and a very thin-layer chemical film mainly containing drug molecule was transferred to the acceptor glass slide. Subsequently, MALDI MSI was performed on the chemical film without additional sample treatment. One major advantage of LACT is to minimize ionization competition/suppression from the tissue itself by removing abundant endogenous lipid and protein components. The superior performance of LACT led to the successful visualization of regional distribution patterns of 16 CNS drugs in the mouse brain. Furthermore, the dynamic spatial changes of risperidone and its metabolite were visualized over a 24-h period. Also, the brain-to-plasma (B/P) ratio could be obtained according to MALDI MSI results, providing an alternative means to assess brain penetration in drug discovery.
Collapse
|
18
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
19
|
Ma G, Zhao X, Guo M, Liu Y, Shi K, Guo C, Pan Y. 6-Glycosylaminoquinoline-assisted LDI MS for detection and imaging of small molecules with enhanced detection selectivity and sensitivity. Anal Chim Acta 2022; 1201:339620. [DOI: 10.1016/j.aca.2022.339620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
20
|
Sun R, Zhang Y, Tang W, Li B. Submicron 3,4-dihydroxybenzoic acid–TiO 2 composite particles for enhanced MALDI MS imaging of secondary metabolites in the root of differently aged baical skullcap. Analyst 2022; 147:3017-3024. [DOI: 10.1039/d2an00710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a high-efficient organic-inorganic hybrid matrix for MALDI MSI of secondary metabolites in plant tissues.
Collapse
Affiliation(s)
- Ruiyang Sun
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
21
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|