1
|
Jeffery AA, Bo T, Askarova G, Mirkin MV. Probing the catalytic heterogeneity of single FeCo and FeCoNi hydroxide nanoneedles by scanning electrochemical microscopy. Chem Commun (Camb) 2025; 61:3556-3559. [PMID: 39912755 DOI: 10.1039/d4cc06469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Bimetallic and trimetallic alloys are widely used as catalysts for the oxygen evolution reaction (OER) and other electrocatalytic processes. We employed a scanning electrochemical microscope (SECM) and finite-element simulations to investigate the OER at single FeCo and FeCoNi hydroxide nanoneedles and observed different distributions of catalytic activity on bimetallic and trimetallic particles.
Collapse
Affiliation(s)
- A Anto Jeffery
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
- Environmental Science and Engineering Laboratory, Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tianyu Bo
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA.
- The Graduate Center of CUNY, New York, NY 10016, USA
- Advanced Science Research Center at The Graduate Center, CUNY, New York, NY 10031, USA
| |
Collapse
|
2
|
Bo T, Ghoshal D, Wilder LM, Miller EM, Mirkin MV. High-Resolution Mapping of Photocatalytic Activity by Diffusion-Based and Tunneling Modes of Photo-Scanning Electrochemical Microscopy. ACS NANO 2025; 19:3490-3499. [PMID: 39792635 PMCID: PMC11781031 DOI: 10.1021/acsnano.4c13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained. In this article, we report photoreactivity imaging of two-dimensional MoS2 photocatalysts by two modes of photoscanning electrochemical microscopy (photo-SECM): diffusion and tunneling-based modes. Diffusion-based (feedback mode) photo-SECM is used to map the electron transfer and hydrogen evolution rates on mixed-phase MoS2 nanosheets and MoS2 chemical vapor deposition (CVD)-grown triangles. An extremely high resolution of photoelectrochemical imaging (about 1-2 nm) by the tunneling mode of the photo-SECM is demonstrated.
Collapse
Affiliation(s)
- Tianyu Bo
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The
Graduate Center of CUNY, New York, New York 10016, United States
| | - Debjit Ghoshal
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Logan M. Wilder
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced
Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
3
|
Leslie N, Mena-Morcillo E, Morel A, Mauzeroll J. General Method for Fitting Kinetics from the SECM Images of Reactive Sites on Flat Surfaces. Anal Chem 2024; 96:10877-10885. [PMID: 38917090 PMCID: PMC11238733 DOI: 10.1021/acs.analchem.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/27/2024]
Abstract
Scanning electrochemical microscopy (SECM) is a technique for imaging electrochemical reactions at a surface. The interaction between electrochemical reactions occurring at the sample and scanning electrode tip is quite complicated and requires computer modeling to obtain quantitative information from SECM images. Often, existing computer models must be modified, or a new model must be created from scratch to fit kinetic parameters for different reactive features. This work presents a method that can simulate the SECM image of a reactive feature of any shape on a flat surface which is coupled to a computer program which effectuates the automated fitting of kinetic information from these images. This fitting program is evaluated along with several methods for estimating the shapes of reactive features from their SECM images. Estimates of the reactive feature shape from SECM images were not sufficiently accurate and produced median relative errors for the surface rate constant that were >50%. Fortunately, more precise techniques for imaging the reactive features such as optical microscopy can supply sufficiently accurate shapes for the fitting procedure to produce accurate results. Fits of simulated SECM images using the actual shape from the simulation produced median relative errors for the surface rate constant that were <10% for the smallest reactive features tested. This method was applied to the SECM images of aluminum alloy AA7075 which revealed diffusion-limited kinetics for ferrocene methanol reduction over inclusions in the surface of the alloy.
Collapse
Affiliation(s)
- Nathaniel Leslie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Alban Morel
- Automotive and Surface Transportation, National Research Council Canada, Saguenay, Quebec G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
4
|
He Y, Zhang R, Wang Z, Ye H, Zhao H, Lu B, Du P, Lu X. Unveiling the Influence of Sulfur Doping on Photoelectrochemical Performance in BiVO 4/FeOOH Heterostructures. Anal Chem 2024; 96:110-116. [PMID: 38150391 DOI: 10.1021/acs.analchem.3c03287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BiVO4 is a promising photoanode for photoelectrochemical (PEC) water splitting but suffers from high charge carrier recombination and sluggish surface water oxidation kinetics that limit its efficiency. In this work, a model of sulfur-incorporated FeOOH cocatalyst-loaded BiVO4 was constructed. The composite photoanode (BiVO4/S-FeOOH) demonstrates an enhanced photocurrent density of 3.58 mA cm-2, which is 3.7 times higher than that of the pristine BiVO4 photoanode. However, the current explanations for the generation of enhanced photocurrent signals through the incorporation of elements and cocatalyst loading remain unclear and require further in-depth research. In this work, the hole transfer kinetics were investigated by using a scanning photoelectrochemical microscope (SPECM). The results suggest that the incorporation of sulfur can effectively improve the charge transfer capacity of FeOOH. Moreover, the oxygen evolution reaction model provides evidence that S-doping can induce a "fast" surface catalytic reaction at the cocatalyst/solution interface. The work not only presents a promising approach for designing a highly efficient photoanode but also offers valuable insights into the role of element doping in the PEC water-splitting system.
Collapse
Affiliation(s)
- Yaorong He
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Rongfang Zhang
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ze Wang
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Huiqin Ye
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Huihuan Zhao
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Bingzhang Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peiyao Du
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
5
|
Askarova G, Hesari M, Barman K, Mirkin MV. Visualizing Overall Water Splitting on Single Microcrystals of Phosphorus-Doped BiVO 4 by Photo-SECM. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47168-47176. [PMID: 37754848 DOI: 10.1021/acsami.3c13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Particulate bismuth vanadate (BiVO4) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO4. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O2 and H2 agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
6
|
Qin Y, Tan R, Wen J, Huang Q, Wang H, Liu M, Li J, Wang C, Shen Y, Hu L, Gu W, Zhu C. Engineering the microenvironment of electron transport layers with nickle single-atom sites for boosting photoelectrochemical performance. Chem Sci 2023; 14:7346-7354. [PMID: 37416724 PMCID: PMC10321534 DOI: 10.1039/d3sc01523h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in the rational design of semiconductor-electrocatalyst photoelectrodes provide robust driving forces for improving energy conversion and quantitative analysis, while a deep understanding of elementary processes remains underwhelming due to the multistage interfaces involved in semiconductor/electrocatalyst/electrolyte. To address this bottleneck, we have constructed carbon-supported nickel single atoms (Ni SA@C) as an original electron transport layer with catalytic sites of Ni-N4 and Ni-N2O2. This approach illustrates the combined effect of photogenerated electron extraction and the surface electron escape ability of the electrocatalyst layer in the photocathode system. Theoretical and experimental studies reveal that Ni-N4@C, with excellent oxygen reduction reaction catalytic activity, is more beneficial for alleviating surface charge accumulation and facilitating electrode-electrolyte interfacial electron-injection efficiency under a similar built-in electric field. This instructive method enables us to engineer the microenvironment of the charge transport layer for steering the interfacial charge extract and reaction kinetics, providing a great prospect for atomic scale materials to enhance photoelectrochemical performance.
Collapse
Affiliation(s)
- Ying Qin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Rong Tan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jing Wen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Qikang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hengjia Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Mingwang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinli Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science Lanzhou 730000 P. R. China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
7
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
8
|
Insights into the Enhanced Photoelectrochemical Performance through Construction of the Z-Scheme and Type II Heterojunctions. Anal Chem 2022; 94:8539-8546. [DOI: 10.1021/acs.analchem.2c01607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Liu R, Wang D, Han C, Wang P, Tong Z, Tan B, Liu Z. The synergistic effect of CuBi 2O 4 and Co-Pi: improving the PEC activity of BiVO 4-based composite materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reducing the reaction barrier on the photoelectrode surface and increasing the water oxidation power of the sample surface are the key issues to improve photoelectrochemical water splitting performances.
Collapse
Affiliation(s)
- Rui Liu
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Dong Wang
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Changcun Han
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Pan Wang
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengfu Tong
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Baohua Tan
- College of Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhifeng Liu
- College of Science, Hubei University of Technology, Wuhan, 430068, China
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, 300384, Tianjin, China
| |
Collapse
|