1
|
Sanders JD, Owen ON, Tran BH, Juetten KJ, Marty MT. UniChromCD for Demultiplexing Time-Resolved Charge Detection-Mass Spectrometry Data. Anal Chem 2024; 96:15014-15022. [PMID: 39225436 DOI: 10.1021/acs.analchem.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Charge detection mass spectrometry (CD-MS) enables characterization of large, heterogeneous analytes through the analysis of individual ion signals. Because hundreds to thousands of scans must be acquired to produce adequate ion statistics, CD-MS generally requires long analysis times. The slow acquisition speed of CD-MS complicates efforts to couple it with time-dispersive techniques, such as chromatography and ion mobility, because it is not always possible to acquire enough scans from a single sample injection to generate sufficient ion statistics. Multiplexing methods based on Hadamard and Fourier transforms offer an attractive solution to this problem by improving the duty cycle of the separation while preserving retention/drift time information. However, integrating multiplexing with CD-MS data processing is complex. Here, we present UniChromCD, a new module in the open-source UniDec package that incorporates CD-MS time-domain data processing with demultiplexing tools. Following a detailed description of the algorithm, we demonstrate its capabilities using two multiplexed CD-MS workflows: Hadamard-transform size-exclusion chromatography and Fourier-transform ion mobility. Overall, UniChromCD provides a user-friendly interface for analysis and visualization of time-resolved CD-MS data.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Schramm HM, Cabrera ER, Greer C, Clowers BH. A Modular Variable Temperature FT-IMS Instrument Optimized for Gas-Phase Ion Chemistry Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1883-1890. [PMID: 38994799 DOI: 10.1021/jasms.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The latest iteration of modular, open-source rolled ion mobility spectrometers was characterized and tailored for heated ion chemistry experiments. Because the nature of ion-neutral interactions is innately linked to the temperature of the drift cell, heated IMS experiments explicitly probe the fundamental characteristics of these collisions. While classic mobility experiments examine ions through inert buffer gases, doping the drift cell with reactive vapor enables desolvated chemical reactions to be studied. By using materials with minimal outgassing and ensuring the isolation of the drift tube from the surrounding ambient conditions, an open-source drift cell outfitted with heating components enables investigations of chemical reactions as a function of temperature. We show here that elevated temperatures facilitate an increase in deuterium incorporation and allow for hydrogen/deuterium exchanges otherwise unattainable under ambient conditions. While the initial fast exchanges get faster as temperature is increased, the slow rate which rises from the kinetic nonlinearity though to be attributed to ion-neutral clustering, remains constant with no change in mobility shifts. Additionally, we show the analytical merit of multiplexing mobility data by comparing the performance of traditional signal-averaging and FT-IMS modes.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Elvin R Cabrera
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Cullen Greer
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
3
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Buzitis NW, Clowers BH. Development of a Modular, Open-Source, Reduced-Pressure, Drift Tube Ion Mobility Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:804-813. [PMID: 38512132 DOI: 10.1021/jasms.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Toward the goal of minimizing construction costs while maintaining high performance, a new, reduced-pressure, drift tube ion mobility system is coupled with an ion trap mass analyzer through a custom ion shuttle. The availability of reduced-pressure ion mobility systems remains limited due to comparatively expensive commercial options and limited shared design features in the open literature. This report details the complete design and benchmarking characteristics of a reduced-pressure ion mobility system. The system is constructed from FR4 PCB electrodes and encased in a PTFE vacuum enclosure with custom torque-tightened couplers to utilize standard KF40 bulkheads. The PTFE enclosure directly minimizes the overall system expenses, and the implementation of threaded brass inserts allows for facile attachments to the vacuum enclosure without damaging the thermoplastic housing. Front and rear ion funnels maximize ion transmission and help mitigate the effects of radial ion diffusion. A custom planar ion shuttle transports ions from the exit of the rear ion funnel into the ion optics of an ion trap mass analyzer. The planar ion shuttle can couple the IM system to any contemporary Thermo Scientific ion trap mass analyzer. Signal stability and ion intensity remain unchanging following the implementation of the planar ion shuttle when compared to the original stacked ring ion guide. The constructed IM system showed resolving powers up to 85 for various small molecules and proteins using the Fourier transform from a ∼1 m drift tube. Recorded mobilities derived from first principles agree with published literature results with an average error of 1.1% and an average error toward literature values using single field calibration of <1.3%.
Collapse
Affiliation(s)
- Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
5
|
Cabrera ER, Schrader RL, Walker TE, Laganowsky A, Russell DH, Clowers BH. Nonlinear Frequency Modulation for Fourier Transform Ion Mobility Mass Spectrometry Improves Experimental Efficiency. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 497:117197. [PMID: 38352886 PMCID: PMC10861183 DOI: 10.1016/j.ijms.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Through optimization of terminal frequencies and effective sampling rates, we have developed nonlinear sawtooth-shaped frequency sweeps for efficient Fourier transform ion mobility mass spectrometry (FT-IM-MS) experiments. This is in contrast to conventional FT-IM-MS experiments where ion gates are modulated according to a linear frequency sweep. Linear frequency sweeps are effective but can be hindered by the amount of useful signal obtained using a single sweep over a large frequency range imposed by ion gating inefficiencies, particularly small ion packets, and gate depletion. These negative factors are direct consequences of the inherently low gate pulse widths of high-frequency ion gating events, placing an upper bound on FT-IM-MS performance. Here, we report alternative ion modulation strategies. Sawtooth frequency sweeps may be constructed for the purpose of either extending high-SNR transients or conducting efficient signal-averaging experiments for low-SNR transients. The data obtained using this approach show high-SNR signals for a set of low-mass tetraalkylammonium salts (<1000 m/z) where resolving powers in excess of 500 are achieved. Data for low-SNR obtained for multimeric protein complexes streptavidin (53 kDa) and GroEL (800 kDa) also reveal large increases in the signal-to-noise ratio for reconstructed arrival time distributions.
Collapse
Affiliation(s)
- Elvin R. Cabrera
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Robert L. Schrader
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Thomas E. Walker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
6
|
Naylor CN, Clowers BH, Schlottmann F, Solle N, Zimmermann S. Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37276587 DOI: 10.1021/jasms.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With ion mobility spectrometry increasingly used in mass spectrometry to enhance separation by increasing orthogonality, low ion throughput is a challenge for the drift-tube ion mobility experiment. The High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is no exception and routinely uses duty cycles of less than 0.1%. Multiplexing techniques such as Fourier transform and Hadamard transform represent two of the most common approaches used in the literature to improve ion throughput for the IMS experiment; these techniques promise increased duty cycles of up to 50% and an increased signal-to-noise ratio (SNR). With no instrument modifications required, we present the implementation of Hadamard Transform on the HiKE-IMS using a low cost, high-speed (600 MHz), open source microcontroller, a Teensy 4.1. Compared to signal average mode, 7- to 10-bit pseudorandom binary sequences resulted in increased analyte signal by over a factor of 3. However, the maximum SNR gain of 10 did not approach the theoretical 2n-1 gain largely due to capacitive coupling of the ion gate modulation with the Faraday plate used as a detector. Even when utilizing an inverse Hadamard technique, capacitive coupling was not completely eliminated. Regardless, the benefits of multiplexing IMS coupled to mass spectrometers are well documented throughout literature, and this first effort serves as a proof of concept for multiplexing HiKE-IMS. Finally, the highly flexible Teensy used in this effort can be used to multiplex other devices or can be used for Fourier transform instead of Hadamard transform.
Collapse
Affiliation(s)
- Cameron N Naylor
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Nic Solle
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| |
Collapse
|
7
|
Cabrera ER, Laganowsky A, Clowers BH. FTflow: An Open-Source Python GUI for FT-IM-MS Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:790-793. [PMID: 36854177 PMCID: PMC10370402 DOI: 10.1021/jasms.2c00352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As part of a larger effort to aid in seamless integration of Fourier-based multiplexed ion mobility with a range mass analyzers, we have developed an all-in-one graphical user interface tool for FT-IM-MS data analysis that runs directly within a web browser. This tool, FTflow, accepts mzML files and displays necessary information such as mass spectra and extracted ion chromatograms in order to reconstruct arrival time distributions. It also extracts the corresponding mobility-related information (e.g., Ko and CCS) for each of the target ion populations. Furthermore, input fields for experimental conditions are clearly laid out for users and ease-of-use. With flexibility in mind, the processing scripts and GUI interface are written entirely in Python and allows users the option to modify source code to fit their specific needs. While the intention for this tool is to be a starting point for exploratory analysis of FT-IM-MS data, it has the capability to be adapted for use in more automated data processing pipelines through direct access of core processing routines.
Collapse
Affiliation(s)
- Elvin R. Cabrera
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
9
|
Butalewicz JP, Sanders JD, Clowers BH, Brodbelt JS. Improving Ion Mobility Mass Spectrometry of Proteins through Tristate Gating and Optimization of Multiplexing Parameters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:101-108. [PMID: 36469482 DOI: 10.1021/jasms.2c00274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coupling drift tube ion mobility (IM) to Fourier transform mass spectrometry (FT-MS) affords the opportunity for gas-phase separation of ions based on size and conformation with high-resolution mass analysis. However, combining IM and FT-MS is challenging because ions exit the drift tube on a much faster time scale than the rate of mass analysis. Fourier transform (FT) and Hadamard transform multiplexing methods have been implemented to overcome the duty-cycle mismatch, offering new avenues for obtaining high-resolution, high-mass-accuracy analysis of mobility-selected ions. The gating methods used to integrate the drift tube with the FT mass analyzer discriminate against the transmission of large, low-mobility ions owing to the well-known gate depletion effect. Tristate gating strategies have been shown to increase ion transmission for drift tube IM-FT-MS systems through implementation of dual ion gating, controlling the quantity and timing of ions through the drift tube to reduce losses of slow-moving ions. Here we present an optimized set of multiplexing parameters for tristate gating ion mobility of several proteins on an Orbitrap mass spectrometer and further report parameters for increased ion transmission and mobility resolution as well as decreased experimental times from 15 min down to 30 s. On average, peak intensities in the arrival time distributions (ATDs) for ubiquitin increased 2.1× on average, while those of myoglobin increased by 1.5× with a resolving power increase on average of 11%.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Sipe SN, Jeanne Dit Fouque K, Garabedian A, Leng F, Fernandez-Lima F, Brodbelt JS. Exploring the Conformations and Binding Location of HMGA2·DNA Complexes Using Ion Mobility Spectrometry and 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1092-1102. [PMID: 35687872 PMCID: PMC9274541 DOI: 10.1021/jasms.2c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| |
Collapse
|
11
|
Sipe SN, Sanders JD, Reinecke T, Clowers BH, Brodbelt JS. Separation and Collision Cross Section Measurements of Protein Complexes Afforded by a Modular Drift Tube Coupled to an Orbitrap Mass Spectrometer. Anal Chem 2022; 94:9434-9441. [PMID: 35736993 PMCID: PMC9302900 DOI: 10.1021/acs.analchem.2c01653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New developments in analytical technologies and biophysical methods have advanced the characterization of increasingly complex biomolecular assemblies using native mass spectrometry (MS). Ion mobility methods, in particular, have enabled a new dimension of structural information and analysis of proteins, allowing separation of conformations and providing size and shape insights based on collision cross sections (CCSs). Based on the concepts of absorption-mode Fourier transform (aFT) multiplexing ion mobility spectrometry (IMS), here, a modular drift tube design proves capable of separating native-like proteins up to 148 kDa with resolution up to 45. Coupled with high-resolution Orbitrap MS, binding of small ligands and cofactors can be resolved in the mass domain and correlated to changes in structural heterogeneity observed in the ion-neutral CCS distributions. We also demonstrate the ability to rapidly determine accurate CCSs for proteins with 1-min aFT-IMS-MS sweeps without the need for calibrants or correction factors.
Collapse
Affiliation(s)
- Sarah N. Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D. Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Sanders JD, Shields SW, Escobar EE, Lanzillotti MB, Butalewicz JP, James VK, Blevins MS, Sipe SN, Brodbelt JS. Enhanced Ion Mobility Separation and Characterization of Isomeric Phosphatidylcholines Using Absorption Mode Fourier Transform Multiplexing and Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:4252-4259. [PMID: 35239318 DOI: 10.1021/acs.analchem.1c04711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural diversity of phospholipids plays a critical role in cellular membrane dynamics, energy storage, and cellular signaling. Despite its importance, the extent of this diversity has only recently come into focus, largely owing to advances in separation science and mass spectrometry methodology and instrumentation. Characterization of glycerophospholipid (GP) isomers differing only in their acyl chain configurations and locations of carbon-carbon double bonds (C═C) remains challenging due to the need for both effective separation of isomers and advanced tandem mass spectrometry (MS/MS) technologies capable of double-bond localization. Drift tube ion mobility spectrometry (DTIMS) coupled with MS can provide both fast separation and accurate determination of collision cross section (CCS) of molecules but typically lacks the resolving power needed to separate phospholipid isomers. Ultraviolet photodissociation (UVPD) can provide unambiguous double-bond localization but is challenging to implement on the timescales of modern commercial drift tube time-of-flight mass spectrometers. Here, we present a novel method for coupling DTIMS with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing that affords simultaneous localization of double bonds and accurate CCS measurements even when isomers cannot be fully resolved in the mobility dimension. This method is demonstrated on two- and three-component mixtures and shown to provide CCS measurements that differ from those obtained by individual analysis of each component by less than 1%.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W Shields
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Cabrera ER, Clowers BH. Synchronized Stepped Frequency Modulation for Multiplexed Ion Mobility Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:557-564. [PMID: 35108007 PMCID: PMC9264663 DOI: 10.1021/jasms.1c00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Implementation of frequency-encoded multiplexing for ion mobility spectrometry (e.g., Fourier transform ion mobility spectrometry (FT-IMS)) has facilitated the direct coupling of drift tube ion mobility instrumentation with ion-trap mass analyzers despite their duty cycle mismatch. Traditionally, FT-IMS experiments have been carried out to utilize continuous linear frequency sweeps that are independent of the scan rate of the ion-trap mass analyzer, thus creating a situation where multiple frequencies are swept over two sequential mass scans. This in turn creates a degree of ambiguity in which the ion current derived from a single modulation frequency cannot be assigned to a single data point in the frequency-modulated signal. In an effort to eliminate this ambiguity, this work describes a discrete stepwise function to modulate the ion gates of the IMS while synchronization between the generated frequencies and the scan rate of the linear ion trap is achieved. While the number of individual frequencies used in the stepped frequency sweeps is less than in continuous linear modulation experiments, there is no loss in performance and high levels of precision are maintained across differing combinations of terminal frequencies and scan lengths. Furthermore, the frequency-scan synchronization enables further data-processing techniques such as linear averaging of the frequency modulated signal to drastically improve signal-to-noise ratio for both high and low intensity analytes.
Collapse
|
14
|
McCabe JW, Jones BJ, Walker TE, Schrader RL, Huntley AP, Lyu J, Hoffman NM, Anderson GA, Reilly PTA, Laganowsky A, Wysocki VH, Russell DH. Implementing Digital-Waveform Technology for Extended m/ z Range Operation on a Native Dual-Quadrupole FT-IM-Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2812-2820. [PMID: 34797072 PMCID: PMC9026758 DOI: 10.1021/jasms.1c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz., salts, buffers, detergents, and/or endogenous ligands. The second quadrupole (Q) is used to mass-select ions of interest for further interrogation by ion mobility spectrometry and/or collision-induced dissociation (CID). Q is operated using digital-waveform technology (DWT) to improve the mass selection compared to that achieved using traditional sinusoidal waveforms at floated DC potentials (>500 V DC). DWT allows for increased precision of the waveform for a fraction of the cost of conventional RF drivers and with readily programmable operation and precision (Hoffman, N. M. . A comparison-based digital-waveform generator for high-resolution duty cycle. Review of Scientific Instruments 2018, 89, 084101).
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert L Schrader
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Adam P Huntley
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nathan M Hoffman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | | | - Peter T A Reilly
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|