1
|
Qiu S, Wu Y, Li Z, Shao M, Tan J, Du B, Zhang C, Pan Z, Li C, Zhao X. Electric Field-Induced Enhanced Raman Spectroscopy Sensor and Photocatalysis with Thermoelectric-Plasmonic Metal Nanocomposites. J Phys Chem Lett 2024; 15:10457-10464. [PMID: 39392341 DOI: 10.1021/acs.jpclett.4c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Electric field-induced surface-enhanced Raman scattering (E-SERS) substrates have been proven to further enhance the attained Raman intensity. Herein, integrated with plasmonic Ag nanoparticles (Ag NPs), the thermoelectric Bi2Te3 plate as an E-SERS substrate decreased the limit of detection by 2 orders of magnitude and increased the SERS signal by >20 times compared to those without electrical field induction. The thermoelectric potential produced by the Bi2Te3 plate could modulate the electron density and subsequently change the Fermi level of Ag. This increases the resonant electron transition probability using a broad range of molecules. The plasmon-activated catalytic reactions of the interconversion between p-nitrothiophenol and p,p'-dimercaptoazobenzene could be controlled through the E-SERS template. On the basis of the finite element method, explicit theoretical analysis indicated that the Ag NP-Bi2Te3-molecule charge transfer could improve our understanding of the SERS and photocatalytic mechanism.
Collapse
Affiliation(s)
- Si Qiu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yang Wu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Mingrui Shao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jibing Tan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Baoqiang Du
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhongbin Pan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chonghui Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
3
|
Sytu MRC, Hahm JI. Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection. BIOSENSORS 2024; 14:480. [PMID: 39451693 PMCID: PMC11506539 DOI: 10.3390/bios14100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Significant research accomplishments have been made so far for the development and application of ZnO nanomaterials in enhanced optical biodetection. The unparalleled optical properties of ZnO nanomaterials and their reduced dimensionality have been successfully exploited to push the limits of conventional optical biosensors and optical biodetection platforms for a wide range of bioanalytes. ZnO nanomaterial-enabled advancements in optical biosensors have been demonstrated to improve key sensor performance characteristics such as the limit of detection and dynamic range. In addition, all nanomaterial forms of ZnO, ranging from 0-dimensional (0D) and 1D to 2D nanostructures, have been proven to be useful, ensuring their versatile fabrication into functional biosensors. The employment of ZnO as an essential biosensing element has been assessed not only for ensembles but also for individual nanomaterials, which is advantageous for the realization of high miniaturization and minimal invasiveness in biosensors and biodevices. Moreover, the nanomaterials' incorporations into biosensors have been shown to be useful and functional for a variety of optical detection modes, such as absorption, colorimetry, fluorescence, near-band-edge emission, deep-level emission, chemiluminescence, surface evanescent wave, whispering gallery mode, lossy-mode resonance, surface plasmon resonance, and surface-enhanced Raman scattering. The detection capabilities of these ZnO nanomaterial-based optical biosensors demonstrated so far are highly encouraging and, in some cases, permit quantitative analyses of ultra-trace level bioanalytes that cannot be measured by other means. Hence, steady research endeavors are expected in this burgeoning field, whose scientific and technological impacts will grow immensely in the future. This review provides a timely and much needed review of the research efforts made in the field of ZnO nanomaterial-based optical biosensors in a comprehensive and systematic manner. The topical discussions in this review are organized by the different modes of optical detection listed above and further grouped by the dimensionality of the ZnO nanostructures used in biosensors. Following an overview of a given optical detection mode, the unique properties of ZnO nanomaterials critical to enhanced biodetection are presented in detail. Subsequently, specific biosensing applications of ZnO nanomaterials are discussed for ~40 different bioanalytes, and the important roles that the ZnO nanomaterials play in bioanalyte detection are also identified.
Collapse
Affiliation(s)
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
4
|
Xu Y, Li Z, Liao Y, Wang J, Zhang T, Liu X, Zhang Y. Unveiling the Dual-Enhancing Mechanisms of Kinetically Controlled Silver Nanoparticles on Piezoelectric PVDF Nanofibers for Optimized SERS Performance. ACS Sens 2024; 9:849-859. [PMID: 38271684 DOI: 10.1021/acssensors.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Noble metal nanoparticle (NMP)-based composite substrates have garnered significant attention as a highly promising technique for surface-enhanced Raman scattering (SERS) in diverse scientific disciplines because their remarkable ability to amplify and functionalize Raman signals has positioned them as valuable tools for molecular detection. However, optimizing the size and distribution of NMPs has not received sufficient emphasis because of challenges associated with the precise control of deposition and the modulation of reducing rates during growth. In this research, we achieved the optimized size and spatial patterns of AgNWs on electrospun poly(vinylidene fluoride) (PVDF) nanofibers by utilizing a polydopamine (PDA) layer as a mild and controllable reduction mediator, by which the size and density of the AgNWs could be relatively precisely manipulated, achieving a dense distribution of effective "hot spots". On the other hand, harnessing the inherent piezoelectric properties of the electrospun PVDF nanofibers further boosted the LSPR effect during the SERS test, forming a flexible dual-enhancing composite SERS substrate with excellent sensitivity. In addition to addressing structural aspects, exploiting synergistic systems capable of transferring external energy or forces to enhance the SERS performances presents a compelling avenue to broaden the practical applications of SERS. The dual-enhanced substrate achieved an exceptional enhancement factor (EF) of 1.05 × 108 and a low detection limit (LOD) of 10-10 M during the SERS test. This study focuses on integrating NMPs with electrospun piezoelectric polymer nanofibers to develop a dual-enhancing SERS substrate with excellent sensitivity and practicality. The findings provide valuable insights into controllably depositing NMPs on electrospun polymer fibers and hold significant implications for the development of highly sensitive and practical SERS substrates across various applications.
Collapse
Affiliation(s)
- Ying Xu
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhiyu Li
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yuanrong Liao
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Tong Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Xifu Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yang Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
5
|
Du B, Liu Y, Tan J, Wang Z, Ji C, Shao M, Zhao X, Yu J, Jiang S, Zhang C, Man B, Li Z. Thermoelectrically Driven Dual-Mechanism Regulation on SERS and Application Potential for Rapid Detection of SARS-CoV-2 Viruses and Microplastics. ACS Sens 2024; 9:502-513. [PMID: 38193423 DOI: 10.1021/acssensors.3c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Electric-induced surface-enhanced Raman scattering (E-SERS) has been widely studied for its flexible regulation of SERS after the substrate is prepared. However, the enhancement effect is not sufficiently high in the E-SERS technology reported thus far, and no suitable field of application exists. In this study, a highly sensitive thermoelectrically induced SERS substrate, Ag/graphene/ZnO (AGZ), was fabricated using ZnO nanoarrays (NRs), graphene, and Ag nanoparticles (NPs). Applying a temperature gradient to the ZnO NRs enhanced the SERS signals of the probe molecules by a factor of approximately 20. Theoretical and experimental results showed that the thermoelectric potential enables the simultaneous modulation of the Fermi energy level of graphene and the plasma resonance peak of Ag NPs, resulting in a double enhancement in terms of physical and chemical mechanisms. The AGZ substrate was then combined with a mask to create a wearable thermoelectrically enhanced SERS mask for collecting SARS-CoV-2 viruses and microplastics. Its SERS signal can be enhanced by the temperature gradient created between a body heat source (∼37 °C) and a cold environment. The suitability of this method for virus detection was also examined using a reverse transcription-polymerase chain reaction and SARS-CoV-2 virus antigen detection. This work offers new horizons for research of E-SERS, and its application potential for rapid detection of the SARS-CoV-2 virus and microplastics was also studied.
Collapse
Affiliation(s)
- Baoqiang Du
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Yalin Liu
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Jibing Tan
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Zhanning Wang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Chang Ji
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Mingrui Shao
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Xiaofei Zhao
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Jing Yu
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Shouzhen Jiang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Chao Zhang
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Baoyuan Man
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| | - Zhen Li
- School of Physical and Electronic, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
Xu J, Xu Y, Li J, Zhao J, Jian X, Xu J, Gao Z, Song YY. Construction of High-Active SERS Cavities in a TiO 2 Nanochannels-Based Membrane: A Selective Device for Identifying Volatile Aldehyde Biomarkers. ACS Sens 2023; 8:3487-3497. [PMID: 37643286 DOI: 10.1021/acssensors.3c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The accurate, sensitive, and selective on-site screening of volatile aldehyde biomarkers for lung cancer is of utmost significance for preclinical cancer diagnosis and treatment. Applying surface-enhanced Raman scattering (SERS) for gas sensing remains difficult due to the small Raman cross section of most gaseous molecules and interference from other components in exhaled breath. Using an Au asymmetrically coated TiO2 nanochannel membrane (Au/TiO2 NM) as the substrate, a ZIF-8-covered Au/TiO2 NM SERS sensing substrate is designed for the detection of exhaled volatile organic compounds (VOCs). Au/TiO2 NM provides uniformly amplified Raman signals for trace measurements in this design. Importantly, the interfacial nanocavities between Au nanoparticles (NPs) and metal-organic frameworks (MOFs) served as gaseous confinement cavities, which is the key to enhancing the capture and adsorption ability toward gaseous analytes. Both ends of the membrane are left open, allowing gas molecules to pass through. This facilitates the diffusion of gaseous molecules and efficient capture of the target analyte. Using benzaldehyde as a typical gas marker model of lung cancer, the Schiff base reaction with a Raman-active probe molecule 4-aminothiophene (4-ATP) pregrafted on Au NPs enabled trace and multicomponent detection. Moreover, the combination of machine learning (ML) and Raman spectroscopy eliminates subjective assessments of gaseous aldehyde species with the use of a single feature peak, allowing for more accurate identification. This membrane sensing device offers a promising design for the development of a desktop SERS analysis system for lung cancer point-of-care testing (POCT).
Collapse
Affiliation(s)
- Jing Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Ying Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junhan Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Xiaoxia Jian
- College of Science, Northeastern University, Shenyang 110819, China
| | - Jingwen Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Tian Y, Xu G, Cai K, Zhao X, Zhang B, Wang L, Wang T. Emerging biotransduction strategies on soft interfaces for biosensing. NANOSCALE 2022; 15:80-91. [PMID: 36512329 DOI: 10.1039/d2nr05444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a lab-on-soft biochip providing accurate and timely biomarker information, wearable biosensors can satisfy the increasing demand for intelligent e-health services, active disease diagnosis/therapy, and huge bioinformation data. As biomolecules generally could not directly produce detectable signals, biotransducers that specifically convert biomolecules to electrical or optical signals are involved, which determines the pivotal sensing performance including 3S (sensitivity, selectivity, and stability), reversibility, etc. The soft interface poses new requirements for biotransducers, especially equipment-free, facile operation, mechanical tolerance, and high sensing performance. In this review, we discussed the emerging electrochemical and optical biotransduction strategies on wearables from the aspects of the transduction mechanism, amplification strategies, biomaterial selection, and device fabrication procedures. Challenges and perspectives regarding future biotransducers for monitoring trace amounts of biomolecules with high fidelity, sensitivity, and multifunctionality are also discussed. It is expected that through fusion with functional electronics, wearable biosensors can provide possibilities to further decentralize the healthcare system and even build biomolecule-based intelligent cyber-physical systems and new modalities of cyborgs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guoliang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kaiyu Cai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiao Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Bo Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ting Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Liu B, Zheng S, Tang H, Liu Q, Li H, Gao B, Zhao X, Sun F. Highly sensitive detection of free testosterone assisted by magnetic nanobeads and gap-enhanced SERS nanotags. Colloids Surf B Biointerfaces 2022; 214:112460. [PMID: 35298951 DOI: 10.1016/j.colsurfb.2022.112460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/03/2023]
Abstract
The quantitative determination of trace free testosterone (FT) is of great significance for the diagnosis of androgen-related endocrine diseases. Herein, a fascinating detection protocol was developed for highly sensitive FT analysis through a competitive immunoassay mechanism, which was composed of magnetic nanobeads (MNBs) and gap-enhanced surface enhanced Raman scattering (SERS) nanotags. With the MNBs as detection carriers, trace FT could be enriched by simple magnetic separation. The SERS nanotag constructed with silver-gold core-shell nanoparticle was acted as quantitative label, and Raman indicators were located at the interface between silver core and gold shell. It is demonstrated that the as-proposed protocol achieves high detection sensitivity for FT of 12.11 fg mL-1, and wider linear dynamic detection range (LDR) in the concentration of 100 fg mL-1 to 100 ng mL-1 with R2 value of 0.979, which is due to the enhanced Raman signal of the gap-enhanced SERS nanotag and the high surface-to-volume ratio of the MNB, respectively. Taking advantages of such sensitivity and accuracy approach, the as-developed powerful strategy presents potential applications for rapid disease diagnosis through analyzing trace levels of FT, and can also provide guidance for the exploitation of analysis project of other analytes.
Collapse
Affiliation(s)
- Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, China.
| | - Shiya Zheng
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hanyu Tang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, China
| | - Qian Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, China
| | - Haitao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
11
|
Zhang YH, Li YY, Yang XY, Gong FL, Chen JL, Xie KF, Zhang HL, Fang SM. Ultra-sensitive H 2S sensor based on sunflower-like In-doped ZnO with enriched oxygen vacancies. Phys Chem Chem Phys 2022; 24:28530-28539. [DOI: 10.1039/d2cp02539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In–ZnO with oxygen vacancies exhibits a higher sensing response and a shorter recovery time for H2S compared to ZnO.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ying-Ying Li
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xuan-Yu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Fei-Long Gong
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jun-Li Chen
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ke-Feng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shao-Ming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
12
|
Liu W, Zhou S, Liu J, Zhao X, Feng Z, Wang D, Gong Z, Fan M. Quantitative detection of 6-thioguanine in body fluids based on a free-standing liquid membrane SERS substrate. Anal Bioanal Chem 2021; 414:1663-1670. [PMID: 34812902 DOI: 10.1007/s00216-021-03790-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023]
Abstract
The adverse reactions caused by 6-thioguanine (6-TG) in anti-cancer treatment are closely related to the dose, leading to the urgent need for clinical monitoring of its concentration. In this work, a highly reproducible free-standing liquid membrane (FLM) surface-enhanced Raman spectroscopy (SERS) substrate was developed to detect 6-TG in human urine and serum quantitatively. Briefly, a prepared sample was adjusted to pH 2 and mixed with concentrated core-shell bimetallic nanoparticle (AgcoreAushell NP) suspension. The Au/Ag ratio of the AgcoreAushell NPs was optimized. Then the mixture was formed into an FLM using a custom mold. The relative standard deviation (RSD) of the experimental results can be stabilized below 10% (n ≥ 10). The R2 of the calibration curve in the range of 10 ~ 100 μg kg-1 was 0.988. In addition, the limit of detection (LOD) (3σ/k) of 6-TG was 5 μg kg-1. The FLM SERS platform has been successfully applied to the rapid and reliable analysis of 6-TG spiked in body fluids.
Collapse
Affiliation(s)
- Wen Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Shana Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Jing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Xin Zhao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610031, Sichuan, China
| | - Zhe Feng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610031, Sichuan, China.
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China.
| |
Collapse
|