1
|
Yan G, Zhang Y, Allamprese A, Brooks KN, Chen W, Yan S, Chen TY. From Molecules to Classrooms: A Comprehensive Guide to Single-Molecule Localization Microscopy. JOURNAL OF CHEMICAL EDUCATION 2024; 101:514-520. [PMID: 39070090 PMCID: PMC11271931 DOI: 10.1021/acs.jchemed.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized our ability to visualize cellular structures, offering unprecedented detail. However, the intricate biophysical principles that underlie SMLM can be daunting for newcomers, particularly undergraduate and graduate students. To address this challenge, we introduce the fundamental concepts of SMLM, providing a solid theoretical foundation. In addition, we have developed an intuitive graphical interface APP that simplifies these core concepts, making them more accessible for students. This APP clarifies how super-resolved images are fitted and highlights the crucial factors determining image quality. Our approach deepens students' understanding of SMLM by combining theoretical instruction with practical learning. This development equips them with the skills to carry out single-molecule super-resolved experiments and explore the microscopic world beyond the diffraction limit.
Collapse
Affiliation(s)
| | | | | | - Kameron N Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204
| | - Wenkai Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204
| | - Shudan Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204
| |
Collapse
|
2
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
3
|
Monge Neria R, Kisley L. Single-Molecule Imaging in Commercial Stationary Phase Particles Using Highly Inclined and Laminated Optical Sheet Microscopy. Anal Chem 2023; 95:2245-2252. [PMID: 36652205 DOI: 10.1021/acs.analchem.2c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We resolve the three-dimensional, nanoscale locations of single-molecule analytes within commercial stationary phase materials using highly inclined and laminated optical sheet (HILO) microscopy. Single-molecule fluorescence microscopy of chromatography can reveal the molecular heterogeneities that lead to peak broadening, but past work has focused on surfaces designed to mimic stationary phases, which have different physical and chemical properties than the three-dimensional materials used in real columns and membranes. To extend single-molecule measurements to commercial stationary phases, we immobilize individual stationary phase particles and modify our microscope for imaging at further depths with HILO, a method which was originally developed to resolve single molecules in cells of comparable size to column packing materials (∼5-10 μm). We describe and characterize how to change the angle of incidence to achieve HILO so that other researchers can easily incorporate this method onto their existing epi- or total internal reflection fluorescence microscopes. We show improvements up to a 32% in signal-to-background ratio and 118% in the number of single molecules detected within stationary phase particles when using HILO compared to epifluorescence. By controlling the objective position relative to the sample, we produce three-dimensional maps of molecule locations throughout entire stationary phase particles at nanoscale lateral and axial resolutions. The number of localized molecules remains constant axially throughout isolated stationary phase particles and between different particles, indicating that heterogeneity in a separation would not be caused by such affinity differences at microscales but instead kinetic differences at nanoscales on identifiable and distinct adsorption sites.
Collapse
Affiliation(s)
- Ricardo Monge Neria
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
| |
Collapse
|
4
|
Yu X, Lei X, Zhu Y, Zhao Q. Dendrimer-functionalized hydrothermal nanosized carbonaceous spheres as superior anion exchangers for ion chromatographic separation. Mikrochim Acta 2022; 189:239. [PMID: 35639192 DOI: 10.1007/s00604-022-05324-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Polyamidamine (PAMAM) dendrimer-functionalized hydrothermal nanosized carbonaceous spheres (HNCSs) were prepared and utilized as latexes for agglomerated anion exchange chromatography (AEC) stationary phase. The high-concentration and scalable production of monodisperse HNCSs (73-98 nm) was accomplished via the polyquaternium-7-assisted hydrothermal carbonization of fructose. The novel PAMAM-based quaternizations of HNCSs were designed by the amidation with PAMAM and epoxy-amine addition reaction with glycidol in aqueous solution. The mild functionalization condition leads to well-kept morphology of HNCSs, which forms one even latex layer on the sulfonated surface of polystyrene-divinylbenzene microbeads for the construction of AEC packing. Under isocratic elution, seven common inorganic anions and five organic acids were baseline separated in 9 min on prepared packing with efficiencies of 54,000-79,800 plates m-1 and asymmetry factor (As) of 1.02-1.12. The obtained separation efficiency, peak symmetry, and analysis time were superior to reported or typical commercial counterparts. The quick separation of polarizable anions in 7 min and carbohydrates in 5 min could also be carried out with symmetrical peaks (As: 1.00-1.18) and high efficiencies (49,700-62,100 N/m). Favorable stability and reproducibility were proved by continuous flushing and injection. The constructed packings were further applied to the determination of thiosulfate and sulfate in water reducer, galacturonic acid in Angelica polysaccharide hydrolysate, and fluoride samples in 4 min.
Collapse
Affiliation(s)
- Xinran Yu
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou, 311402, China
| | - Xujing Lei
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou, 311402, China
| | - Yan Zhu
- Department of Chemistry, Xixi Campus, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310028, China
| | - Qiming Zhao
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou, 311402, China.
| |
Collapse
|
5
|
Misiura A, Dutta C, Leung W, Zepeda O J, Terlier T, Landes CF. The competing influence of surface roughness, hydrophobicity, and electrostatics on protein dynamics on a self-assembled monolayer. J Chem Phys 2022; 156:094707. [DOI: 10.1063/5.0078797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.
Collapse
Affiliation(s)
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Wesley Leung
- Applied Physics Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
| |
Collapse
|