1
|
Rao Cheekatla S, Murale DP, Gopala L, Lee JS. Sensing and Imaging Agents for Cyclooxygenase Enzyme. ChemMedChem 2025; 20:e202400636. [PMID: 39443291 DOI: 10.1002/cmdc.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
In this concept, we present a comprehensive study on the development and application of COX-2-specific fluorescent probes for cancer imaging and diagnosis. To target cancer cells and measuring cancer-related activities in specific organelles quickly and accurately are crucial factors for early diagnosis and research on cancer pathology and treatment. This concept explores a variety of probes based on indomethacin (IMC), celecoxib, rofecoxib as well as CoxFluor and each one demonstrates unique mechanisms and high selectivity towards COX-2 enzymes. These probes were designed to enhance fluorescence upon binding to COX-2 which enable precise visualization of tumor and inflamed tissues. The research emphasizes the importance of COX-2 as a biomarker in cancer diagnostics, particularly in identifying cancer stem cells and inflamed tissues. This concept highlights the potentiality of these probes in non-invasive imaging techniques which offering significant advancements in cancer diagnosis and monitoring. The in vivo and in vitro experiments, including applications in mouse models and human tissue samples, confirm the efficacy of these probes in providing detailed imaging for clinical and research applications.
Collapse
Affiliation(s)
- Subba Rao Cheekatla
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dhiraj P Murale
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul, South Korea
| | - Lavanya Gopala
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
2
|
Jin L, Liao X, Yuan F, Wang Y, Liao YX, Liu B, Kou J, Li J, Huang X, Zhong X, Lim JY, Zhang J, Ren WX. COX-2-targeted fluorescent probe for ClO - monitoring in precise cancer detection. Bioorg Chem 2025; 156:108164. [PMID: 39855114 DOI: 10.1016/j.bioorg.2025.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/22/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Hypochlorite anion (ClO-) is closely associated with cancer development and progression, necessitating precise monitoring of ClO- in tumor sites, and Cyclooxygenase-2 (COX-2 is highly expressed in tumor cells. So we rationally designed two ClO--specific responsive fluorescent probes COX2-ClO1 and COX2-ClO2, using indomethacin (IMC) as the COX-2 targeting moiety and methylene blue as fluorophore unit. Both probes exhibited high selectivity and sensitivity towards ClO- in the in vitro solution assays and possess excellent biocompatibility in cellular experiments. Compared to COX2-ClO1, COX2-ClO2 exhibited superior targeting specificity for COX-2, enabling precise differentiation between tumor cells and normal cells and allowing imaging of both exogenous and endogenous ClO- in the in vivo experiments. Moreover, COX2-ClO2 could accurately target the tumor site in xenograft mice and is likely metabolized by the kidneys.
Collapse
Affiliation(s)
- Lingyu Jin
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xufang Liao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China
| | - Fengying Yuan
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Yumin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China
| | - Ye-Xin Liao
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008 China
| | - Bo Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Junfeng Kou
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Jiali Li
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xuefei Huang
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China
| | - Ja-Yun Lim
- Department of Medical Engineering, Wonju-Campus Korea Polytechnic College, Wonju 26406 Republic of Korea
| | - Junfeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500 China.
| | - Wen Xiu Ren
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000 China; Precision Imaging and Intelligent Analysis Key Laboratory of Luzhou City, Luzhou 646000 China.
| |
Collapse
|
3
|
Tae Hong K, Bin Park S, Murale DP, Hoon Lee J, Hwang J, Young Jang W, Lee JS. Disaggregation-Activated pan-COX Imaging Agents for Human Soft tissue Sarcoma. Angew Chem Int Ed Engl 2024; 63:e202405525. [PMID: 38607969 DOI: 10.1002/anie.202405525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Cancer stem cells are pivotal players in tumors initiation, growth, and metastasis. While several markers have been identified, there remain challenges particularly in heterogeneous malignancies like adult soft tissue sarcomas, where conventional markers are inherently overexpressed. Here, we designed BODIPY scaffold fluorescence probes (BD-IMC-1, BD-IMC-2) that activate via disaggregation targeting for cyclooxygenase (COX), a potential marker for CSCs in sarcoma in clinical pathology. Based on their structures, BD-IMC-1 showcased higher susceptibility to disaggregation compared to BD-IMC-2, consistent with their selective interaction with COX. Notably, the BD-IMC-1 revealed positive cooperativity binding to COX-2 at sub-micromolar ranges. Both probes showed significant fluorescence turn-on upon LPS or PMA triggered COX-2 upregulation in live RAW264.7, HeLa, and human sarcoma cell line (Saos-LM2) up to 2-fold increase with negligible toxicity. More importantly, the BD-IMC-1 demonstrated their practical imaging for COX-2 positive cells in paraffin-fixed human sarcoma tissue. Considering the fixed tissues are most practiced pathological sample, our finding suggests a potential of disaggregation activated chemosensor for clinical applications.
Collapse
Affiliation(s)
- Kyung Tae Hong
- Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
- Chemical and Biological Integrative Research Center, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Seung Bin Park
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dhiraj P Murale
- Chemical and Biological Integrative Research Center, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung Hoon Lee
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Anwar G, Chen D, Chen Q, Xia C, Yan J. Rofecoxib derivatives as NIR fluorescent probes for mitochondrial viscosity and in vivo imaging of Aβ plaques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123637. [PMID: 37976581 DOI: 10.1016/j.saa.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder for which the underlying causes remain largely unknown. Therefore, the development of imaging agents capable of detecting biomarkers associated with this disease is crucial. Dual-functional probes are particularly important as they can track two biomarkers at the same time and examine their interaction. Herein, Two red-emissive dual-functional fluorescent probes, RC-1 and RA-2, have been designed and synthesized based on the Rofecoxib scaffold. When probes (RC-1 and RA-2) are in viscous media or bound to Aβ aggregates, there is a dramatic enhancement in fluorescence emission due to the constraint of the twisted intramolecular charge transfer effect (TICT). RC-1 with ideal blood-brain barrier (BBB) penetrability enables visualization of Aβ plaques in vivo AD mice. These results suggest that RC-1 and RA-2 have the potential to serve as powerful fluorescence imaging agents for Aβ and mitochondria-related pathology in AD.
Collapse
Affiliation(s)
- Gulziba Anwar
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daoyuan Chen
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, PR China
| | - Qingxiu Chen
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, PR China
| | - Chunli Xia
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, PR China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Wang B, Shi J, Guo N, Shao L, Zhai W, Jiang L, Zhao F, Wang J, Wang J, Du L, Pang X, Yan L. Rational design synthesis and evaluation of a novel near-infrared fluorescent probe for selective imaging of amyloid-β aggregates in Alzheimer's disease. Anal Chim Acta 2023; 1281:341900. [PMID: 38783740 DOI: 10.1016/j.aca.2023.341900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder that remains incurable to date, seriously affecting the quality of life and health of those affected. One of the key neuropathological hallmarks of AD is the formation of amyloid-β (Aβ) plaques. Near-infrared (NIR) probes that possess a large Stokes shift show great potential for imaging of Aβ plaques in vivo and in vitro. Herein, we proposed a rational strategy for design and synthesis of a series of NIR fluorescent probes that incorporate a tricarbonitrile group as a strong electron-withdrawing group (EWG) to enable NIR emission and large Stokes shift for optimal imaging of Aβ plaques. The probe TCM-UM exhibited remarkable in vitro performance, including strong NIR emission (λem = 670 nm), large Stokes shift (120-245 nm), and its affinity for Aβ42 aggregates (Kd = 43.78 ± 4.09 nM) was superior to the commercially available probe Thioflavin T (ThT, Kd = 896.04 ± 33.43 nM). Further, TCM-UM was selected for imaging Aβ plaques in brain tissue slices and APP/PS1 transgenic (AD) mice, the results indicated that TCM-UM had an excellent ability to penetrate the blood-brain barrier (BBB) compared with ThT, and it could effectively distinguish wild-type (Wt) mice and APP/PS1 transgenic (AD) mice.
Collapse
Affiliation(s)
- Bingxin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Junzhuo Shi
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Ning Guo
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Lulian Shao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Weibin Zhai
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Lei Jiang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Fenqin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 125 Nushua St, Boston, MA, 02149, USA
| | - Lida Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, 266071, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lin Yan
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
7
|
Fu YX, Zhang ZY, Guo WY, Dai YJ, Wang ZY, Yang WC, Yang GF. In vivo fluorescent screening for HPPD-targeted herbicide discovery. PEST MANAGEMENT SCIENCE 2022; 78:4947-4955. [PMID: 36054619 DOI: 10.1002/ps.7117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD), playing a critical role in vitamin E and plastoquinone biosynthesis in plants, has been recognized as one of the most important targets for herbicide discovery for over 30 years. Structure-based rational design of HPPD inhibitors has received more and more research interest. However, a critical challenge in the discovery of new HPPD inhibitors is the common inconsistency between molecular-level HPPD-based bioevaluation and the weed control efficiency in fields, due to the unpredictable biological processes of absorption, distribution, metabolism, and excretion. RESULTS In this study, we developed a fluorescent-sensing platform of efficient in vivo screening for HPPD-targeted herbicide discovery. The refined sensor has good capability of in situ real-time fluorescence imaging of HPPD in living cells and zebrafish. More importantly, it enabled the direct visible monitoring of HPPD inhibition in plants in a real-time manner. CONCLUSION We developed a highly efficient in vivo fluorescent screening method for HPPD-targeted herbicide discovery. This discovery not only offers a promising tool to advance HPPD-targeted herbicide discovery, but it also demonstrates a general path to develop the highly efficient, target-based, in vivo screening for pesticide discovery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zi-Ye Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Yi-Jie Dai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zheng-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
8
|
Anusuyadevi K, Velmathi S. Aggregation induced bathochromic shift of emission for detection of moisture in organic solvents and food stuffs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
ACQ-to-AIE Transformation by Regioisomerization of Rofecoxib Derivatives for Developing Novel Mechanochromic and Acidochromic Materials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wang X, Chen L, Li R, Xie Z, Hu M, Sun S, Li Z, Hao J, Lin B, Chen X, Xie L. Development of Rofecoxib-Based Fluorophores from ACQ to AIE by Positional Regioisomerization. Chempluschem 2022; 87:e202100522. [PMID: 35179314 DOI: 10.1002/cplu.202100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
The development of aggregation-induced emission luminogens (AIEgens) has attracted increasing attention due to their potential applications in various areas in recent years. In this study, a facile conversion from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) was achieved by an efficient regioisomerization strategy based on the rofecoxib scaffold. Two compounds, named PYR2 and PYR4, were identified as regioisomers of rofecoxib derivatives to show dramatically different fluorescent properties. Compound PYR2 with an ortho-substituted piperidine group showed typical AIE activity while compound PYR4 with a para-piperidine group exhibited typical ACQ behavior. Notably, compound PYR2 showed polymorphism with two forms of crystals. It was also endowed with reversible mechanochromic luminescence and acidochromic properties. The different fluorescent properties were elucidated by UV/Vis absorption spectroscopy, powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analyses. Its application as a security ink and in lipid droplets imaging have been demonstrated.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350007, P.R. China
| | - Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P.R. China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|