1
|
Masucci C, Nagornov KO, Kozhinov AN, Kraft K, Tsybin YO, Bleiner D. Evaluation of atmospheric-plasma-source absorption mode Fourier transform Orbitrap mass spectrometry for chlorinated paraffin mixtures. Anal Bioanal Chem 2024; 416:5133-5144. [PMID: 39138657 PMCID: PMC11377688 DOI: 10.1007/s00216-024-05450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Chlorinated paraffins (CP) are complex molecular mixtures occurring in a wide range of isomers and homologs of environmental hazards, whose analytical complexity demand advanced mass spectrometry (MS) methods for their characterization. The reported formation of chlorinated olefins (COs) and other transformation products during CP biotransformation and degradation can alter the MS analysis, increasing the high resolution required to distinguish CPs from their degradation products. An advanced setup hyphenating a plasma ionization source and an external high-performance data acquisition and processing system to the legacy hybrid LTQ Orbitrap XL mass spectrometer is reported. First, the study demonstrated the versatility of a liquid sampling atmospheric pressure glow discharge, as a soft ionization technique, for CP analysis. Second, enhanced resolution and sensitivity provided by the absorption mode Fourier transform spectral representation on this legacy mass spectrometer are shown. The developed Orbitrap-based platform allowed the detection of new isotopic clusters and CPs and COs to be distinguished at medium resolution (setting 30,000 at m/z 400, ~ 400 ms transients), and even chlorinated di-olefins (CdiOs) at higher resolution (setting 100,000 at m/z 400, ~ 1500 ms transients). Overall, such proof-of-principle instrumental improvements are promising for environmental and analytical research in the field of CP analysis.
Collapse
Affiliation(s)
- Claudia Masucci
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Kevin Kraft
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Davide Bleiner
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Leach FE, Nagornov KO, Kozhinov AN, Tsybin YO. External Data Systems Enable Enhanced (and Sustainable) Fourier Transform Mass Spectrometry Imaging for Legacy Hybrid Linear Ion Trap-Orbitrap Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39031087 DOI: 10.1021/jasms.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Legacy Fourier transform (FT) mass spectrometers provide robust platforms for bioanalytical mass spectrometry (MS) yet lack the most modern performance capabilities. For many laboratories, the routine investment in next generation instrumentation is cost prohibitive. Field-based upgrades provide a direct path to extend the usable lifespan of MS platforms which may be considered antiquated based on performance specifications at the time of manufacture. Here we demonstrate and evaluate the performance of a hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer that has been enhanced via an external high-performance data acquisition and processing system to provide true absorption mode FT processing during an experimental acquisition. For the application to mass spectrometry imaging, several performance metrics have been improved including mass resolving power, mass accuracy, and dynamic range to provide an FTMS system comparable to current platforms. We also demonstrate, perhaps, the unexpected ability of these legacy platforms to detect usable time-domain signals up to 5 s in duration to achieve a mass resolving power 8× higher than the original platform specification.
Collapse
Affiliation(s)
- Franklin E Leach
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | | | | |
Collapse
|
3
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Lyutvinskiy Y, Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Meng Z, Zhang X, Saei AA, Fu T, Chamot-Rooke J, Tsybin YO, Makarov A, Zubarev RA. Adding Color to Mass Spectra of Biopolymers: Charge Determination Analysis (CHARDA) Assigns Charge State to Every Ion Peak. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:902-911. [PMID: 38609335 PMCID: PMC11066971 DOI: 10.1021/jasms.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z starting from z = 1 and color coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) data set, CHARDA aids peptide mass spectra interpretation by facilitating charge-state deconvolution of large ionic species in crowded regions, estimating z even in the absence of an isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust, and consistent with conventional FTMS and FTMS/MS data acquisition procedures. An effective charge-state resolution Rz ≥ 6 is obtained with the potential for further improvements.
Collapse
Affiliation(s)
- Yaroslav Lyutvinskiy
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | | | | | - Natalia Gasilova
- Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Zhaowei Meng
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Xuepei Zhang
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Amir Ata Saei
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Department
of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Centre for
Translational Microbiome Research, Department of Microbiology, Tumor
and Cell Biology, Karolinska Institutet, Stockholm 17165, Sweden
| | | | | | | | | | - Roman A. Zubarev
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M., Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- The National Medical Research
Center for Endocrinology, 115478 Moscow, Russia
| |
Collapse
|
6
|
Watts E, Bashyal A, Dunham SD, Crittenden CM, Brodbelt JS. Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation. Antibodies (Basel) 2024; 13:30. [PMID: 38651410 PMCID: PMC11036284 DOI: 10.3390/antib13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Sean D. Dunham
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| |
Collapse
|
7
|
Deslignière E, Yin VC, Ebberink EHTM, Rolland AD, Barendregt A, Wörner TP, Nagornov KO, Kozhinov AN, Fort KL, Tsybin YO, Makarov AA, Heck AJR. Ultralong transients enhance sensitivity and resolution in Orbitrap-based single-ion mass spectrometry. Nat Methods 2024; 21:619-622. [PMID: 38443506 DOI: 10.1038/s41592-024-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Orbitrap-based charge detection mass spectrometry utilizes single-molecule sensitivity to enable mass analysis of even highly heterogeneous, high-mass macromolecular assemblies. For contemporary Orbitrap instruments, the accessible ion detection (recording) times are maximally ~1-2 s. Here by modifying a data acquisition method on an Orbitrap ultrahigh mass range mass spectrometer, we trapped and monitored individual (single) ions for up to 25 s, resulting in a corresponding and huge improvement in signal-to-noise ratio (×5 compared with 1 s), mass resolution (×25) and accuracy in charge and mass determination of Orbitrap-based charge detection mass spectrometry.
Collapse
Affiliation(s)
- Evolène Deslignière
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Victor C Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Eduard H T M Ebberink
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Amber D Rolland
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | - Alexander A Makarov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Ibraheem FQ, Maraie NK, Al-Sudani BT, Raauf AM. Prospective effect of linkers type on the anticancer activity of pemetrexed-monoclonal antibody (atezolizumab) conjugates. F1000Res 2024; 12:1197. [PMID: 39140089 PMCID: PMC11320184 DOI: 10.12688/f1000research.140284.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Background Conventional chemotherapy results in severe toxic side effects due to affecting normal and cancer cells. The conjugation of chemotherapy with mAb will improve the chemotherapy selectivity towards cancer cells and at the same time will potentiate immune system to detect and kill cancer cells. The aim of the study was to prepare atezolizumab-pemetrexed conjugate using two types of linkers (linker conjugated with -NH2 of lysine amino acid in the mAb). Methods This study utilizes (for the first time) the mAb atezolizumab (AtZ) to prepare a new, selective conjugate carrier for pemetrexed (PMX) by using gamma amino butyric acid (GABA) as linker for the first time in comparison to the commonly used linker polyethylene glycol (PEG) using carbodiimide (EDC) / N-hydroxysulfosuccinimide (Sulfo-NHS) zero length cross linker. Stepwise evaluation for PMX-linkers linkage as well as mAb conjugates was evaluated by FTIR, 1HNMR, DSC, LC-MS, gel-electrophoresis as well as the anticancer activity against lung cells A549. Results The work revealed that two molecules of GABA combined with PMX, which in turn conjugated with an average ratio of 4:1 with mAb, while one molecule of PEG combined with PMX, which in turn conjugated with mAb in the same average ratio. The IC 50 for the prepared PMX-GABA-AtZ conjugate was 0.048 µM, which was much lower than PMX alone, antibody AtZ alone as well as PMX-PEG-AtZ conjugate in a dose and time dependent manner. Conclusions The potential use of such conjugate that selectively directed to the overexpressed lung cells antigen in a low dose leading to reduction of serious side effects of PMX and the cost of therapeutically AtZ mAb used.
Collapse
Affiliation(s)
- Faten Q. Ibraheem
- pharmaceutics, Mustansiriyah University, Baghdad, Baghdad Governorate, 10011, Iraq
| | - Nidhal K. Maraie
- pharmaceutics, Al-Farahidi University, Baghdad, Baghdad Governorate, 10011, Iraq
| | | | - Ayad M.R. Raauf
- pharmaceutical chemistry, Al-Farahidi University, Baghdad, Baghdad Governorate, 10011, Iraq
| |
Collapse
|
9
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Grgic A, Nagornov KO, Kozhinov AN, Michael JA, Anthony IG, Tsybin YO, Heeren RM, Ellis SR. Ultrahigh-Mass Resolution Mass Spectrometry Imaging with an Orbitrap Externally Coupled to a High-Performance Data Acquisition System. Anal Chem 2024; 96:794-801. [PMID: 38127459 PMCID: PMC10794996 DOI: 10.1021/acs.analchem.3c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool that enables molecular sample analysis while simultaneously providing the spatial context of hundreds or even thousands of analytes. However, because of the lack of a separation step prior to ionization and the immense diversity of biomolecules, such as lipids, including numerous isobaric species, the coupling of ultrahigh mass resolution (UHR) with MSI presents one way in which this complexity can be resolved at the spectrum level. Until now, UHR MSI platforms have been restricted to Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Here, we demonstrate the capabilities of an Orbitrap-based UHR MSI platform to reach over 1,000,000 mass resolution in a lipid mass range (600-950 Da). Externally coupling the Orbitrap Q Exactive HF with the high-performance data acquisition system FTMS Booster X2 provided access to the unreduced data in the form of full-profile absorption-mode FT mass spectra. In addition, it allowed us to increase the time-domain transient length from 0.5 to 10 s, providing improvement in the mass resolution, signal-to-noise ratio, and mass accuracy. The resulting UHR performance generates high-quality MALDI MSI images and simplifies the identification of lipids. Collectively, these improvements resulted in a 1.5-fold increase in annotations, demonstrating the advantages of this UHR imaging platform for spatial lipidomics using MALDI-MSI.
Collapse
Affiliation(s)
- Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | | | - Jesse A. Michael
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ian G.M. Anthony
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
11
|
Äärelä A, Räsänen K, Holm P, Salo H, Virta P. Synthesis of Site-Specific Antibody-[60]Fullerene-Oligonucleotide Conjugates for Cellular Targeting. ACS APPLIED BIO MATERIALS 2023; 6:3189-3198. [PMID: 37432881 PMCID: PMC10445261 DOI: 10.1021/acsabm.3c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
An ideal therapeutic antibody-oligonucleotide conjugate (AOC) would be a uniform construct, contain a maximal oligonucleotide (ON) payload, and retain the antibody (Ab)-mediated binding properties, which leads to an efficient delivery of the ON cargo to the site of therapeutic action. Herein, [60]fullerene-based molecular spherical nucleic acids (MSNAs) have been site-specifically conjugated to antibodies (Abs), and the Ab-mediated cellular targeting of the MSNA-Ab conjugates has been studied. A well-established glycan engineering technology and robust orthogonal click chemistries yielded the desired uniform MSNA-Ab conjugates (MW ∼ 270 kDa), with an oligonucleotide (ON):Ab ratio of 24:1, in 20-26% isolated yields. These AOCs retained the antigen binding properties (Trastuzumab's binding to human epidermal growth factor receptor 2, HER2), studied by biolayer interferometry. In addition, Ab-mediated endocytosis was demonstrated with live-cell fluorescence and phase-contrast microscopy on BT-474 breast carcinoma cells, overexpressing HER2. The effect on cell proliferation was analyzed by label-free live-cell time-lapse imaging.
Collapse
Affiliation(s)
- Antti Äärelä
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Kati Räsänen
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Patrik Holm
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
12
|
Phung W, Bakalarski CE, Hinkle TB, Sandoval W, Marty MT. UniDec Processing Pipeline for Rapid Analysis of Biotherapeutic Mass Spectrometry Data. Anal Chem 2023; 95:11491-11498. [PMID: 37478487 DOI: 10.1021/acs.analchem.3c02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.
Collapse
Affiliation(s)
- Wilson Phung
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Corey E Bakalarski
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Trent B Hinkle
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and the Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Kozhinov AN, Johnson A, Nagornov KO, Stadlmeier M, Martin WL, Dayon L, Corthésy J, Wühr M, Tsybin YO. Super-Resolution Mass Spectrometry Enables Rapid, Accurate, and Highly Multiplexed Proteomics at the MS2 Level. Anal Chem 2023; 95:3712-3719. [PMID: 36749928 PMCID: PMC9974827 DOI: 10.1021/acs.analchem.2c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tandem mass spectrometry (MS2)-based multiplexed quantitative proteomics, the complement reporter ion approaches (TMTc and TMTproC) were developed to eliminate the ratio-compression problem of conventional MS2-level approaches. Resolving all high m/z complement reporter ions (∼6.32 mDa-spaced) requires mass resolution and scan speeds above the performance levels of OrbitrapTM instruments. Therefore, complement reporter ion quantification with TMT/TMTpro reagents is currently limited to 5 out of 11 (TMT) or 9 out of 18 (TMTpro) channels (∼1 Da spaced). We first demonstrate that a FusionTM LumosTM Orbitrap can resolve 6.32 mDa-spaced complement reporter ions with standard acquisition modes extended with 3 s transients. We then implemented a super-resolution mass spectrometry approach using the least-squares fitting (LSF) method for processing Orbitrap transients to achieve shotgun proteomics-compatible scan rates. The LSF performance resolves the 6.32 mDa doublets for all TMTproC channels in the standard mass range with transients as short as ∼108 ms (Orbitrap resolution setting of 50,000 at m/z 200). However, we observe a slight decrease in measurement precision compared to 1 Da spacing with the 108 ms transients. With 256 ms transients (resolution of 120,000 at m/z 200), coefficients of variation are essentially indistinguishable from 1 Da samples. We thus demonstrate the feasibility of highly multiplexed, accurate, and precise shotgun proteomics at the MS2 level.
Collapse
Affiliation(s)
| | - Alex Johnson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Michael Stadlmeier
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Warham Lance Martin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Loïc Dayon
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - John Corthésy
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | |
Collapse
|
14
|
Xu T, Zhang F, Chen D, Sun L, Tomazela D, Fayadat-Dilman L. Interrogating heterogeneity of cysteine-engineered antibody-drug conjugates and antibody-oligonucleotide conjugates by capillary zone electrophoresis-mass spectrometry. MAbs 2023; 15:2229102. [PMID: 37381585 DOI: 10.1080/19420862.2023.2229102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Production of site-specific cysteine-engineered antibody-drug conjugates (ADCs) in mammalian cells may produce developability challenges, fragments, and heterogenous molecules, leading to potential product critical quality attributes in later development stages. Liquid phase chromatography with mass spectrometry (LC-MS) is widely used to evaluate antibody impurities and drug-to-antibody ratio, but faces challenges in analysis of fragment product variants of cysteine-engineered ADCs and oligonucleotide-to-antibody ratio (OAR) species of antibody-oligonucleotide conjugates (AOCs). Here, for the first time, we report novel capillary zone electrophoresis (CZE)-MS approaches to address the challenges above. CZE analysis of six ADCs made with different parent monoclonal antibodies (mAbs) and small molecule drug-linker payloads revealed that various fragment impurities, such as half mAbs with one/two drugs, light chains with one/two drugs, light chains with C-terminal cysteine truncation, heavy chain clippings, were well resolved from the main species. However, most of these fragments were coeluted or had signal suppression during LC-MS analysis. Furthermore, the method was optimized on both ionization and separation aspects to enable the characterization of two AOCs. The method successfully achieved baseline separation and accurate quantification of their OAR species, which were also highly challenging using conventional LC-MS methods. Finally, we compared the migration time and CZE separation profiles among ADCs and their parent mAbs, and found that properties of mAbs and linker payloads significantly influenced the separation of product variants by altering their size or charge. Our study showcases the good performance and broad applicability of CZE-MS techniques for monitoring the heterogeneity of cysteine-engineered ADCs and AOCs.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry Michigan State University, East Lansing MI 48824 USA
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc, South San Francisco, CA 94080 USA
| | - Daoyang Chen
- Discovery Biologics, Protein Sciences, Merck & Co., Inc, South San Francisco, CA 94080 USA
| | - Liangliang Sun
- Department of Chemistry Michigan State University, East Lansing MI 48824 USA
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, Merck & Co., Inc, South San Francisco, CA 94080 USA
| | | |
Collapse
|
15
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Advancing Orbitrap Measurements of Collision Cross Sections to Multiple Species for Broad Applications. Anal Chem 2022; 94:15613-15620. [DOI: 10.1021/acs.analchem.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D. Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Characterization of the Time-Domain Isotopic Beat Patterns of Monoclonal Antibodies in Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1113-1125. [PMID: 35638743 DOI: 10.1021/jasms.1c00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The time-domain transients in the Fourier transform mass spectrometry (FTMS) analysis of monoclonal antibodies (mAbs) are known to exhibit characteristic isotopic beat patterns. These patterns are defined by the isotopic distributions of all gaseous mAb ions present in the FTMS mass analyzer, originating from single or multiple charge states, and from single or multiple proteoforms. For an isolated charge state of a single proteoform, the mAb isotopic beat pattern resembles narrow splashes of signal amplitude (beats), spaced periodically in the time-domain transient, with broad (often exceeding 1 s) "valleys" between them. Here, we reinforce the importance of isotopic beat patterns for the accurate interpretation and presentation of FTMS data in the analysis of mAbs and other large biopolymers. An updated, mAb-grade version of the transient-mediated FTMS data simulation and visualization tool, FTMS Simulator is introduced and benchmarked. We then apply this tool to evaluate the charge-state dependent characteristics of isotopic beats in mAbs analyses with modern models of Orbitrap and ion cyclotron resonance (ICR) FTMS instruments, including detection of higher-order harmonics. We demonstrate the impact of the isotopic beat patterns on the analytical characteristics of the resulting mass spectra of individual and overlapping mAb proteoforms. The results reported here detail highly nonlinear dependences of resolution and signal-to-noise ratio on the time-domain transient period, absorption or magnitude mode spectra representation, and apodization functions. The provided description and the demonstrated ability to routinely conduct accurate simulations of FTMS data for large biopolymers should aid the end-users of Orbitrap and ICR FTMS instruments in the analysis of mAbs and other biopolymers, including viruses.
Collapse
Affiliation(s)
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
17
|
Bailey AO, Huguet R, Mullen C, Syka JEP, Russell WK. Ion-Ion Charge Reduction Addresses Multiple Challenges Common to Denaturing Intact Mass Analysis. Anal Chem 2022; 94:3930-3938. [PMID: 35189062 DOI: 10.1021/acs.analchem.1c04973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.
Collapse
Affiliation(s)
- Aaron O Bailey
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - William K Russell
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| |
Collapse
|
18
|
Li Z, Kitov PI, Kitova EN, Bui DT, Moremen KW, Wakarchuk WW, Mahal LK, Macauley MS, Klassen JS. Quantifying Carbohydrate-Active Enzyme Activity with Glycoprotein Substrates Using Electrospray Ionization Mass Spectrometry and Center-of-Mass Monitoring. Anal Chem 2021; 93:15262-15270. [PMID: 34752696 DOI: 10.1021/acs.analchem.1c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate-active enzymes (CAZymes) play critical roles in diverse physiological and pathophysiological processes and are important for a wide range of biotechnology applications. Kinetic measurements offer insight into the activity and substrate specificity of CAZymes, information that is of fundamental interest and supports diverse applications. However, robust and versatile kinetic assays for monitoring the kinetics of intact glycoprotein and glycolipid substrates are lacking. Here, we introduce a simple but quantitative electrospray ionization mass spectrometry (ESI-MS) method for measuring the kinetics of CAZyme reactions involving glycoprotein substrates. The assay, referred to as center-of-mass (CoM) monitoring (CoMMon), relies on continuous (real-time) monitoring of the CoM of an ensemble of glycoprotein substrates and their corresponding CAZyme products. Notably, there is no requirement for calibration curves, internal standards, labeling, or mass spectrum deconvolution. To demonstrate the reliability of CoMMon, we applied the method to the neuraminidase-catalyzed cleavage of N-acetylneuraminic acid (Neu5Ac) residues from a series of glycoproteins of varying molecular weights and degrees of glycosylation. Reaction progress curves and initial rates determined with CoMMon are in good agreement (initial rates within ≤5%) with results obtained, simultaneously, using an isotopically labeled Neu5Ac internal standard, which enabled the time-dependent concentration of released Neu5Ac to be precisely measured. To illustrate the applicability of CoMMon to glycosyltransferase reactions, the assay was used to measure the kinetics of sialylation of a series of asialo-glycoproteins by a human sialyltransferase. Finally, we show how combining CoMMon and the competitive universal proxy receptor assay enables the relative reactivity of glycoprotein substrates to be quantitatively established.
Collapse
Affiliation(s)
- Zhixiong Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|