1
|
Gao X, Ma D, Li K, Xing T, Liu X, Peng L, Chen D, Hao Z. Non-Targeted Metabolomics Combined with Chemometrics by UHPLC-Orbitrap-HRMS and Antioxidant Activity of Atractylodes chinensis (DC.) Koidez. from Eight Origins. Metabolites 2023; 13:888. [PMID: 37623832 PMCID: PMC10456645 DOI: 10.3390/metabo13080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Atractylodes chinensis (DC.) Koidez. (AC) is a type of Atractylodis Rhizoma that is widely used in China to treat diarrhea and arthritis, as well as a nutritional supplement. The objective of this study was to investigate and identify the phytochemicals in the aqueous extract of AC using an ultra-high-performance liquid chromatography (UHPLC)-Orbitrap-HRMS platform based on a non-targeted metabolomic approach. There were 76 compounds in the AC, the majority of which were phenylpropanoids (16) and terpenoids (15). The hierarchical clustering analysis (HCA) and principal component analysis (PCA) results revealed variations across eight AC samples and classified them into four groups. Using Pareto modeling, the orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 11 distinct AC compounds. Furthermore, the antioxidant activity of eight AC samples was assessed using ABTS, DPPH, and OH· methods. The AC samples with concentrations ranging from 0 to 25 mg/mL had no toxic effects on A549 cells. They have a strong therapeutic potential against oxidation-related diseases, and further research on AC is warranted.
Collapse
Affiliation(s)
- Xueyan Gao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Danyang Ma
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Kaiyuan Li
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Tianjiao Xing
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Xiwu Liu
- Qingdao Animal Husbandry Workstation, Qingdao 266100, China
| | - Lingfeng Peng
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
2
|
Szczepaniak O, Ligaj M, Stuper-Szablewska K, Kobus-Cisowska J. Genoprotective effect of cornelian cherry (Cornus mas L.) phytochemicals, electrochemical and ab initio interaction study. Biomed Pharmacother 2022; 152:113216. [PMID: 35665669 DOI: 10.1016/j.biopha.2022.113216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) has broad and multidimensional potential in preventing civilisational diseases. Part of these diseases results from DNA oxidative mutations. Thus, the paper aimed to predict how phenolics present in C. mas may interact with dsDNA in ab initio experiment and to check the effect of different cornelian cherry extracts on DNA structure and DNA oxidation. A special research model was designed using biosensor with a carbonpaste electrode. We resulted in various effects observed for phenolics and the extracts. Flavonoids, but of vitexin interacted with declining energy of the DNA models and liability of DNA oxidation. However, for 8-oxoguaniosine the trend was the opposite. Among the evaluated extracts, water-ethanolic extracts caused decline in adenine and guanine signals after dsDNA exposition on the extract. Principal component analysis showed that alcoholic extracts of cv. Szafer and Słowianin, which were rich in apigenin and kaempferol exhibit mild genoprotective effect.
Collapse
Affiliation(s)
- Oskar Szczepaniak
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poland.
| | - Marta Ligaj
- Department of Non-Food Products Quality and Packaging Development, Poznań University of Economics and Business, Poland
| | | | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poland
| |
Collapse
|