1
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Wolf E, Herasymenko O, Kutera M, Lento C, Arrowsmith C, Ackloo S, Wilson D. Quantitative Hydrogen-Deuterium Exchange Mass Spectrometry for Simultaneous Structural Characterization and Affinity Indexing of Single Target Drug Candidate Libraries. Anal Chem 2024; 96:13015-13024. [PMID: 39074309 PMCID: PMC11326436 DOI: 10.1021/acs.analchem.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Hydrogen-deuterium eXchange mass spectrometry (HDX-MS) is increasingly used in drug development to locate binding sites and to identify allosteric effects in drug/target interactions. However, the potential of this technique to quantitatively analyze drug candidate libraries remains largely unexplored. Here, a collection of 13 WDR5-targeting small molecules with surface plasmon resonance (SPR) dissociation coefficients (KD) ranging from 20 nM to ∼116 μM were characterized using differential HDX-MS (ΔHDX-MS). Conventional qualitative analysis of the ΔHDX-MS data set revealed the binding interfaces for all compounds and allosteric effects where present. We then demonstrated that ΔHDX-MS signal-to-noise (S/N) not only can rank library-relative affinity but also can accurately predict KD from a calibration curve constructed from high-quality SPR data. Three methods for S/N calculation are explored, each suitable for libraries with different characteristics. Our results demonstrate the potential for ΔHDX-MS use in drug candidate library affinity validation and/or determination while simultaneously characterizing structure.
Collapse
Affiliation(s)
- Esther Wolf
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | | | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Genceroglu MY, Cavdar C, Manioglu S, Bayraktar H. Genetically Encoded Fluorescent Probe for Detection of Heme-Induced Conformational Changes in Cytochrome c. BIOSENSORS 2023; 13:890. [PMID: 37754124 PMCID: PMC10526477 DOI: 10.3390/bios13090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Cytochrome c (Cytc) is a key redox protein for energy metabolism and apoptosis in cells. The activation of Cytc is composed of several steps, including its transfer to the mitochondrial membrane, binding to cytochrome c heme lyase (CCHL) and covalent attachment to heme. The spectroscopic methods are often applied to study the structural changes of Cytc. However, they require the isolation of Cytc from cells and have limited availability under physiological conditions. Despite recent studies to elucidate the tightly regulated folding mechanism of Cytc, the role of these events and their association with different conformational states remain elusive. Here, we provide a genetically encoded fluorescence method that allows monitoring of the conformational changes of Cytc upon binding to heme and CCHL. Cerulean and Venus fluorescent proteins attached at the N and C terminals of Cytc can be used to determine its unfolded, intermediate, and native states by measuring FRET amplitude. We found that the noncovalent interaction of heme in the absence of CCHL induced a shift in the FRET signal, indicating the formation of a partially folded state. The higher concentration of heme and coexpression of CCHL gave rise to the recovery of Cytc native structure. We also found that Cytc was weakly associated with CCHL in the absence of heme. As a result, a FRET-based fluorescence approach was demonstrated to elucidate the mechanism of heme-induced Cytc conformational changes with spatiotemporal resolution and can be applied to study its interaction with small molecules and other protein partners in living cells.
Collapse
Affiliation(s)
- Mehmet Yunus Genceroglu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Cansu Cavdar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Selen Manioglu
- Biomedical Science and Engineering Program, Koç University, Istanbul 34450, Turkey
| | - Halil Bayraktar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| |
Collapse
|
4
|
Glasgow A, Hobbs HT, Perry ZR, Wells ML, Marqusee S, Kortemme T. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat Commun 2023; 14:1179. [PMID: 36859492 PMCID: PMC9977783 DOI: 10.1038/s41467-023-36798-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Biological regulation ubiquitously depends on protein allostery, but the regulatory mechanisms are incompletely understood, especially in proteins that undergo ligand-induced allostery with few structural changes. Here we used hydrogen-deuterium exchange with mass spectrometry (HDX/MS) to map allosteric effects in a paradigm ligand-responsive transcription factor, the lac repressor (LacI), in different functional states (apo, or bound to inducer, anti-inducer, and/or DNA). Although X-ray crystal structures of the LacI core domain in these states are nearly indistinguishable, HDX/MS experiments reveal widespread differences in flexibility. We integrate these results with modeling of protein-ligand-solvent interactions to propose a revised model for allostery in LacI, where ligand binding allosterically shifts the conformational ensemble as a result of distinct changes in the rigidity of secondary structures in the different states. Our model provides a mechanistic basis for the altered function of distal mutations. More generally, our approach provides a platform for characterizing and engineering protein allostery.
Collapse
Affiliation(s)
- Anum Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| | - Helen T Hobbs
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zion R Perry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Malcolm L Wells
- Department of Physics, Columbia University, New York, NY, 10032, USA
| | - Susan Marqusee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 2023; 205:95-101. [PMID: 36037883 DOI: 10.1016/j.biochi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Transporters regulate trafficking through the biological membrane of living cells and organelles. Therefore, these proteins play an important role in key cellular processes. Obtaining a molecular-level description of the mechanism of transporters is highly desirable to understand and modulate such processes. Different challenges currently complicate this effort, mostly due to transporters' intrinsic properties. They are dynamic and often averse to in vitro characterization. The crossing of the membrane via a transporter depends on both global and local structural changes that will enable substrate binding from one side of the membrane and release on the other. Dedicated approaches are required to monitor these dynamic changes, ideally within the complex membrane environment. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has recently emerged as a powerful biophysical tool to understand transporters' mechanism. This mini-review aims to offer to the reader an overview of the field of HDX-MS applied to transporters. It first summarizes the current workflow for HDX-MS measurements on transporters. It then provides illustrative examples on the molecular insights that are accessible thanks to the technique; following conformational transitions between different states, observing structural changes upon ligand binding and finally understanding the role of lipid-protein interactions.
Collapse
|
6
|
Frederick AK, Thompson SL, Vakharia ZM, Cherney MM, Lei H, Evenson G, Bowler BE. Effect on intrinsic peroxidase activity of substituting coevolved residues from Ω-loop C of human cytochrome c into yeast iso-1-cytochrome c. J Inorg Biochem 2022; 232:111819. [PMID: 35428021 PMCID: PMC9162143 DOI: 10.1016/j.jinorgbio.2022.111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
Naturally-occurring variants of human cytochrome c (Cytc) that induce thrombocytopenia IV occur within Ω-loop C (residues 40-57). These variants enhance the peroxidase activity of human Cytc apparently by facilitating access to the heme by destabilizing Ω-loops C and D (residues 70-85). Given the importance of peroxidase activity in the early stages of apoptosis, we identified three sites with the EVmutation algorithm in or near Ω-loop C that coevolve and differ between yeast iso-1-Cytc and human Cytc. We prepared iso-1-Cytc variants with all possible combinations of the S40T, V57I and N63T substitutions to determine if these residues decrease the peroxidase activity of iso-1-Cytc to that of human Cytc producing an effective off state for a peroxidase signaling switch. At pH 6 and above, all variants significantly decreased peroxidase activity. However, the correlation of peroxidase activity with local and global stability, expected if cooperative unfolding of Ω-loops C and D is required for peroxidase activity, was generally poor. The m-values derived from the guanidine hydrochloride dependence of the kinetics of imidazole binding to horse Cytc, which is well-characterized by native-state hydrogen exchange methods, and K72A/K73A/K79A iso-1-Cytc show that local structural fluctuations and not subglobal cooperative unfolding of Ω-loops C and D are sufficient to permit binding of a small molecule like peroxide to the heme. A 2.46 Å structure of N63T iso-1-Cytc identifies a change to a hydrogen bond network linking Ω-loops C and D that could modulate the local fluctuations needed for the intrinsic peroxidase activity of Cytc.
Collapse
Affiliation(s)
- Ariel K Frederick
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Sidney L Thompson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Zahra M Vakharia
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Melisa M Cherney
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Haotian Lei
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Garrett Evenson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
7
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|