1
|
Villafuerte-Vega RC, Li HW, Bergman AE, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding Rapidly Characterize the Structural Polydispersity and Stability of an Fc-Fusion Protein. Anal Chem 2024; 96:10003-10012. [PMID: 38853531 DOI: 10.1021/acs.analchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Addison E Bergman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Cordes MS, Gallagher ES. Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse H 3O . Anal Chem 2024; 96:4146-4153. [PMID: 38427846 PMCID: PMC11337394 DOI: 10.1021/acs.analchem.3c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.
Collapse
Affiliation(s)
- Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
3
|
Davis BTV, Velyvis A, Vahidi S. Fluorinated Ethylamines as Electrospray-Compatible Neutral pH Buffers for Native Mass Spectrometry. Anal Chem 2023; 95:17525-17532. [PMID: 37997939 DOI: 10.1021/acs.analchem.3c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.
Collapse
Affiliation(s)
- Bradley T V Davis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Wang B, Tieleman DP. Release of nanodiscs from charged nano-droplets in the electrospray ionization revealed by molecular dynamics simulations. Commun Chem 2023; 6:21. [PMID: 36717705 PMCID: PMC9886951 DOI: 10.1038/s42004-023-00818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Electrospray ionization (ESI) is essential for application of mass spectrometry in biological systems, as it prevents the analyte being split into fragments. However, due to lack of a clear understanding of the mechanism of ESI, the interpretation of mass spectra is often ambiguous. This is a particular challenge for complex biological systems. Here, we focus on systems that include nanodiscs as membrane environment, which are essential for membrane proteins. We performed microsecond atomistic molecular dynamics simulations to study the release of nanodiscs from highly charged nano-droplets into the gas phase, the late stage of ESI. We observed two distinct major scenarios, highlighting the diversity of morphologies of gaseous product ions. Our simulations are in reasonable agreement with experimental results. Our work provides a detailed atomistic view of the ESI process of a heterogeneous system (lipid nanodisc), which may give insights into the interpretation of mass spectra of all lipid-protein systems.
Collapse
Affiliation(s)
- Beibei Wang
- grid.20513.350000 0004 1789 9964Centre for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 People’s Republic of China
| | - D. Peter Tieleman
- grid.22072.350000 0004 1936 7697Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, T2N 1N4 Canada
| |
Collapse
|
5
|
Li H, Allen N, Li M, Li A. Conducting and characterizing femto flow electrospray ionization. Analyst 2022; 147:1071-1075. [PMID: 35195636 DOI: 10.1039/d1an02190g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Femto flow electrospray ionization (ESI) with flow rates ranging from 240 fL min-1 to the low pico level (<10 pL min-1) was conducted and measured using a submicron emitter tip and relay ESI configuration. Signature analyte ion current intensities and profiles were observed. The obtained flow rate and ionization current enabled size calculation for initial charged nanodroplets.
Collapse
Affiliation(s)
- Huishan Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Nicholas Allen
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Mengtian Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Anyin Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|