1
|
Liu W, Wan Y, Wang X, Li Y, Gao B, Zhang Y, Wang K, Feng Y. "Synergistic anticoagulant and endothelial regeneration strategy" based on mussel-inspired phospholipid copolymer coating and bioactive zeolitic imidazolate frameworks-90 to maintain the patency of CoCr stent. Int J Biol Macromol 2024; 280:135842. [PMID: 39306176 DOI: 10.1016/j.ijbiomac.2024.135842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Given the risks of poor patient compliance and bleeding associated with current dual antiplatelet therapies, it is urgent to develop the next generation of cardiovascular stents with anticoagulation and rapid endothelialization capabilities. Inspired by the prominent bioactivity and bioavailability of zeolitic imidazolate framework-90 (ZIF-90) in driving endothelial cell (EC) morphogenesis, this research proposes a "synergistic anticoagulant and endothelial regeneration strategy" depending on mussel-inspired phospholipid copolymer (MIPC) and ZIF-90. Depending on the copolymerization of the catechol with dopamine (Dopa) monomers, Dopa/MIPC coating was immobilized on the surface of CoCr via a one-pot process for resisting the initial thrombosis induced by platelets and fibrinogen. Meanwhile, ZIF-90 was loaded on the coating via coordination effect, aiming to accelerate the proliferation and migration of ECs. Compared with CoCr, the well-designed CoCr-Dopa/MIPC@ZIF-90 not only reduced fibrinogen adhesion by approximately 40 % and platelet adhesion by almost 55 %, but also promoted the proliferation and migration of ECs significantly in vitro. Furthermore, the blood flow velocity of CoCr-Dopa/MIPC@ZIF-90 stent was similar to natural aorta and ECs coverage on it was greatly strengthened after 30 days in a rat aorta vascular stent implantation model. Collectively, CoCr-Dopa/MIPC@ZIF-90 exhibited obvious superiority in reducing the formation of thrombus and promoting endothelial regeneration, which might meet the high requirement for the next generation of vascular stent.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 91, Tianjin 300071, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, Tianjin, China; Tianjin Laboratory of Cardiovascular, Tianjin 300222, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 91, Tianjin 300071, China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, China.
| |
Collapse
|
2
|
Dou B, Wang M, Guo W, Chu S, Chang R, Zhang Y, Wang J, Li X, Wang J. Investigation of relationships between metabolic chemical reporter structures and S-glyco-modification effects. Bioorg Chem 2024; 151:107717. [PMID: 39153331 DOI: 10.1016/j.bioorg.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The approach of metabolic chemical reporters (MCRs) for labeling proteins has been widely used in the past several decades. Nevertheless, artificial side reaction generated with fully protected MCRs, termed S-glyco-modification, occurs with cysteine residues through base-promoted β-elimination and Michael addition, leading to false positives in the proteomic identification. Therefore, next generation of MCRs, including partially protected strategy and modifications on the backbone of monosaccharides, have emerged to improve the labeling efficiency. In this paper, we prepared fifteen kinds of unnatural monosaccharides to investigate the relationships of structures and S-glyco-modification labeling. Our results demonstrated that Ac4GlcNAz and Ac4GalNAz exhibited the most remarkable labeling effects among the detected compounds. Of note, Ac4ManNAz, Ac46AzGlucose and Ac46AzGalactose containing similar structures but did not show similar robust signals as them. Moreover, other modifications on the 1-, 2-, 3-, 4- and 6-site indicated minimal side reactions of S-glyco-modification, raising a possibility that subtle modifications of monosaccharide substrate may alter its role in the process of biosynthesis, for example, by change of electronegativity or enhancement of steric hindrance effects. In conclusion, our discoveries provide a new avenue to choose appropriate probe for selective label proteins in vitro and in vivo without undesired S-glyco-modification.
Collapse
Affiliation(s)
- Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Menghe Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Wenfeng Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Songshen Chu
- School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Renhao Chang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Yang Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Jipeng Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China.
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China.
| |
Collapse
|
3
|
Liu X, Ullah I, Yuan Y. Tumor Acidity-Triggered Bioorthogonal Reactions for Biomedical Applications. Chembiochem 2024; 25:e202400452. [PMID: 38940000 DOI: 10.1002/cbic.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Cancer is one of the most serious threats to human health. Over the past few years, researchers have incrementally uncovered the pivotal role of tumor acidity in tumor formation, development, and treatment. In addition, bioorthogonal reactions have been widely used in tumor diagnosis and therapy, owing to their advantageous characteristics, including small ligand size, biocompatibility, fast reaction kinetics, and high chemospecificity. Consequently, bioorthogonal reactions triggered by tumor acidity have become an emerging strategy in biomedical applications. On this basis, we first elucidate the concept and major strategies of tumor acidity-triggered bioorthogonal reactions. Additionally, we review the progress in biomedical applications, with a particular focus on their importance in disease diagnosis and treatment. Finally, clinical challenges and future trends are also outlooked.
Collapse
Affiliation(s)
- Xiajian Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Guan X, Xing S, Liu Y. Engineered Cell Membrane-Camouflaged Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:413. [PMID: 38470744 DOI: 10.3390/nano14050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Recent strides in nanomaterials science have paved the way for the creation of reliable, effective, highly accurate, and user-friendly biomedical systems. Pioneering the integration of natural cell membranes into sophisticated nanocarrier architectures, cell membrane camouflage has emerged as a transformative approach for regulated drug delivery, offering the benefits of minimal immunogenicity coupled with active targeting capabilities. Nevertheless, the utility of nanomaterials with such camouflage is curtailed by challenges like suboptimal targeting precision and lackluster therapeutic efficacy. Tailored cell membrane engineering stands at the forefront of biomedicine, equipping nanoplatforms with the capacity to conduct more complex operations. This review commences with an examination of prevailing methodologies in cell membrane engineering, spotlighting strategies such as direct chemical modification, lipid insertion, membrane hybridization, metabolic glycan labeling, and genetic engineering. Following this, an evaluation of the unique attributes of various nanomaterials is presented, delivering an in-depth scrutiny of the substantial advancements and applications driven by cutting-edge engineered cell membrane camouflage. The discourse culminates by recapitulating the salient influence of engineered cell membrane camouflage within nanomaterial applications and prognosticates its seminal role in transformative healthcare technologies. It is envisaged that the insights offered herein will catalyze novel avenues for the innovation and refinement of engineered cell membrane camouflaged nanotechnologies.
Collapse
Affiliation(s)
- Xiyuan Guan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wang T, Sun L, Ren T, Hou M, Long Y, Jiang JH, He J. Targeted Protein Degradation Mediated by Genetically Engineered Lysosome-Targeting Exosomes. NANO LETTERS 2023; 23:9571-9578. [PMID: 37823825 DOI: 10.1021/acs.nanolett.3c03148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Protein-degrading chimeras are superior drug modalities compared to traditional protein inhibitors because of their effective therapeutic performance. So far, various targeted protein degradation strategies, including proteolysis-targeting chimeras and lysosome-targeting chimeras, have emerged as essential technologies for tackling diseases caused by abnormal protein expression. Here, we report the development and application of lysosome-targeting exosomes (LYTEXs) for the selective degradation of membrane protein targets. LYTEXs are genetically engineered exosomes expressing multivalent single-chain fragment variables, simultaneously recognizing cell-surface lysosome-targeting and to-be-degraded protein. We show that by targeting the lysosome-directing asialoglycoprotein receptor, bispecific LYTEXs can induce lysosomal degradation of membrane-associated therapeutic targets. This strategy provides a generalizable, easy-to-prepare platform for modulating surface protein expression, with the advantage of therapeutic delivery.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liang Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianyu Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Min Hou
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Ying Long
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianjun He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Chen YL, Sun X, He JW, Xin MK, Liu D, Li CY. Light-Driven and Metal-Organic Framework Synergetic Loaded DNA Tetrahedral Amplifier for Exonuclease III-Powered All-in-One Biosensing and Chemotherapy in Live Biosystems. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410886 DOI: 10.1021/acsami.3c06626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
As a result of inaccurate biosensing and difficult synergetic loading, it is challenging to further impel DNA amplifiers to perform therapeutic application. Herein, we introduce some innovative solutions. First, a smart light-driven biosensing concept based on embedding nucleic acid modules with a simple photocleavage-linker is proposed. In this system, the target identification component is exposed on irradiation with ultraviolet light, thus avoiding an always-on biosensing response during biological delivery. Further, in addition to providing controlled spatiotemporal behavior and precise biosensing information, a metal-organic framework is used for the synergetic loading of doxorubicin in the internal pores, whereafter a rigid DNA tetrahedron-sustained exonuclease III-powered biosensing system is attached to prevent drug leakage and enhance resistance to enzymatic degradation. By selecting a next-generation breast cancer correlative noncoding microRNA biomarker (miRNA-21) as a model low-abundance analyte, a highly sensitive in vitro detection ability even allowing to distinguish single-base mismatching is demonstrated. Moreover, the all-in-one DNA amplifier shows excellent bioimaging competence and good chemotherapy efficacy in live biosystems. These findings will drive research into the use of DNA amplifiers in diagnosis and therapy integrated fields.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
7
|
Chen D, Lin Y, Li A, Luo X, Yang C, Gao J, Lin H. Bio-orthogonal Metabolic Fluorine Labeling Enables Deep-Tissue Visualization of Tumor Cells In Vivo by 19F Magnetic Resonance Imaging. Anal Chem 2022; 94:16614-16621. [DOI: 10.1021/acs.analchem.2c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|