1
|
Ke S, Wang N, Chen X, Tian J, Li J, Yu B. A Label-Free Colorimetric Aptasensor for Flavokavain B Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:569. [PMID: 39860936 PMCID: PMC11768667 DOI: 10.3390/s25020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
Flavokavain B (FKB), a hepatotoxic chalcone from Piper methysticum (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing. Three families of aptamers were obtained, and the best one named FKB-S showed a dissociation constant (KD) of 280 nM using microscale thermophoresis. To demonstrate its practical utility, a rapid and label-free colorimetric aptasensor was developed based on aptamer-induced gold nanoparticle aggregation. This assay achieved a detection limit of 150 nM (43.46 ng/mL) and provided results within 10 min. Compared to traditional chromatographic methods, the aptasensor offers a simple, cost-effective, and equipment-free approach for on-site FKB detection, making it a promising tool for the quality control and safety monitoring of kava-based products in diverse environments.
Collapse
Affiliation(s)
- Sisi Ke
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (S.K.); (X.C.); (B.Y.)
| | - Ningrui Wang
- School of Laboratory Medicine, Nanchang Medical College, Nanchang 330052, China;
| | - Xingyu Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (S.K.); (X.C.); (B.Y.)
| | - Jiangwei Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (S.K.); (X.C.); (B.Y.)
| | - Jiwei Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (S.K.); (X.C.); (B.Y.)
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (S.K.); (X.C.); (B.Y.)
| |
Collapse
|
2
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
3
|
Chinchilla-Cárdenas DJ, Cruz-Méndez JS, Petano-Duque JM, García RO, Castro LR, Lobo-Castañón MJ, Cancino-Escalante GO. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J Genet Eng Biotechnol 2024; 22:100400. [PMID: 39179327 PMCID: PMC11338109 DOI: 10.1016/j.jgeb.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Aptamers are single-stranded oligonucleotide sequences capable of binding to specific ligands with high affinity. In this manner, they are like antibodies but have advantages such as lower manufacturing costs, lower immunogenicity, fewer batch-to-batch differences, a longer shelf life, high tolerance to different molecular milieus, and a greater number of potential targets. Due to their special features, they have been used in drug delivery, biosensor technology, therapy, and diagnostics. The methodology that allowed its production was the "Systematic Evolution of Ligands by Exponential enrichment" (SELEX). Unfortunately, the traditional protocol is time-consuming and laborious. Therefore, numerous variants with considerable optimization steps have been developed, nonetheless, there are still challenges to achieving real applications in the clinical field. Among them, are control of in vivo activities, fast renal filtration, degradation by nucleases and toxicity testing. This review focuses on current technologies based on SELEX, the critical factors for successful aptamer selection, and its upcoming biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Danny Jair Chinchilla-Cárdenas
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Juan Sebastian Cruz-Méndez
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Julieth Michel Petano-Duque
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia; Group of Biosocial Studies of the Body-EBSC, Faculty of Dentistry, Universidad de Antioquia, La Candelaria, Medellín 050010, Antioquia, Colombia.
| | | | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
4
|
Zhou X, Cao Y, Huang X, Qiu S, Xiang X, Niu H, Chen L, Wang S, Lin Z, Zhang S. Screening and Application of DNA Aptamers for Heparin-Binding Protein. Molecules 2024; 29:1717. [PMID: 38675537 PMCID: PMC11051826 DOI: 10.3390/molecules29081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Rapid detection of heparin-binding protein (HBP) is essential for timely intervention in sepsis cases. Current detection techniques are usually antibody-based immunological methods, which have certain problems, such as complexity and slow detection, and fall short in meeting the urgency of clinical needs. The application of an aptamer can address these concerns well. In this study, HBP-specific DNA aptamers were screened first. Among which, Apt-01, Apt-02, and Apt-13 had a high affinity for HBP, exhibiting impressive KD values of 3.42, 1.44, and 1.04 nmol/L, respectively. Then, the aptamer of HBP and its partially complementary primer probe were combined to form double-stranded DNA (dsDNA) and synthesize a circular DNA template. The template is complementary to the primer probe, but due to the presence of dsDNA, ExoIII cleaves C2-13 as an RCA primer probe, rendering the template unable to recognize the primer probe and preventing the RCA reaction from proceeding. When the target is present, it competes with the adapter for recognition and releases C2-13, exposing its 3' end. After initiating the RCA at room temperature and reacting with SYBR GreenII at 37 °C for 20 min, fluorescence changes can be observed and quantitatively analyzed at a 530 nm wavelength, achieving quantitative biological analysis. Apt-01 was used to develop a fluorescent biosensor for HBP detection, which exhibited a good linear range (0.01 nmol/L to 10 nmol/L) and detection limit (0.0056 nmol/L). This advancement holds the potential to lay a solid groundwork for pioneering sensitive and specific methods for HBP detection and to significantly enhance the diagnostic processes for sepsis.
Collapse
Affiliation(s)
- Xi Zhou
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Yingying Cao
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Xiaocui Huang
- Department of Science Research and Training, Fujian Institute of Education, Fuzhou 350001, China;
| | - Shuqian Qiu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Xinran Xiang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Huimin Niu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; (X.Z.); (Y.C.); (S.Q.); (X.X.); (H.N.); (L.C.); (S.W.)
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School, Fujian Medical University, Fuzhou 350025, China
| |
Collapse
|
5
|
Zhao L, Yang G, Zhu C, Li L, Zhao Y, Luan Y, Qu F. Three-step evolutionary enhanced capillary electrophoresis-SELEX for aptamer selection of exosome vesicles. Talanta 2024; 267:125203. [PMID: 37748272 DOI: 10.1016/j.talanta.2023.125203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
As various disease biomarkers, drugs/biomolecules carriers and physiological function regulator, exosomes play significant roles in various physiological and pathological process. Thus, the purification and detection of some exosome are of great significance, which make it necessary for the development of the recognition elements. Aptamers with high affinity and specificity exhibited well in the above areas. In this work, a new three-step evolutionary enhanced strategy based on capillary electrophoresis (CE)-SELEX was proposed for effective aptamer selection of exosome vesicles for the first time. Natural killer cells (NK) exosome was used as the model target. And the aptamer could be obtained in five round CE selection within three steps evolution including precise nucleic acid sequence convergence (with NK exosome specific proteins as targets in round 1st and 3rd), affinity evolution (with NK exosome as target in round 2nd and 4th) and specific evolution (negative selection in round 5th). Arising from the compatibility of CE-SELEX for exosome vesicles aptamer selection, and the proposed strategy, aptamer against NK exosome had been selected with good affinity (KD value of 27.6 nM) and excellent specificity. The as proposed CE-SELEX strategy paves a novel way for recognition element selection of exosome vesicles.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China; Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Yi Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| |
Collapse
|
6
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Bertrand P. Aptamers Targeting the PD-1/PD-L1 Axis: A Perspective. J Med Chem 2023; 66:10878-10888. [PMID: 37561598 DOI: 10.1021/acs.jmedchem.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aptamers have emerged in recent years as alternatives to antibodies or small molecules to interfere with the immune check points by blocking the PD-1/PD-L1 interactions and represent an interesting perspective for immuno-oncology. Aptamers are RNA or DNA nucleotides able to bind to a target with high affinity, with the target ranging from small molecules to proteins and up to cells. Aptamers are identified by the SELEX method that can be modified for specific purposes. The range of applications of aptamers covers therapy as well as new alternative assay technologies similar to ELISA. Aptamers' limited plasma stability can be managed using delivery strategies. The goal of this Perspective is to give an overview of the current development of aptamers targeting the most studied immune checkpoint modulators, PD-1 and PD-L1, and analogous strategies with aptamers for other immuno-related targets.
Collapse
Affiliation(s)
- Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 rue Michel Brunet B27, TSA 51106, 86073 Poitiers cedex 9, France
| |
Collapse
|
8
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
9
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Cutts ZW, Hong JM, Shao S, Tran A, Dimon M, Berndl M, Wu D, Pawlosky A. Target-switch SELEX: Screening with alternating targets to generate aptamers to conserved terminal dipeptides. STAR Protoc 2022; 3:101724. [PMID: 36208449 PMCID: PMC9557731 DOI: 10.1016/j.xpro.2022.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) encompasses a wide variety of high-throughput screening techniques for producing nucleic acid binders to molecular targets through directed evolution. We describe here the design and selection steps for discovery of DNA aptamers with specificity for the two consecutive N-terminal amino acids (AAs) of a small peptide (8-10 amino acids). This bead-based method may be adapted for applications requiring binders which recognize a specific portion of the desired target. For complete details on the use and execution of this protocol, please refer to Hong et al. (2022).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana Wu
- Google, LLC, Mountain View, CA 94043, USA.
| | | |
Collapse
|
11
|
Wang W, Gunasekaran S. MXene-Based Nucleic Acid Biosensors for Agricultural and Food Systems. BIOSENSORS 2022; 12:982. [PMID: 36354491 PMCID: PMC9688781 DOI: 10.3390/bios12110982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 05/04/2023]
Abstract
MXene is a two-dimensional (2D) nanomaterial that exhibits several superior properties suitable for fabricating biosensors. Likewise, the nucleic acid (NA) in oligomerization forms possesses highly specific biorecognition ability and other features amenable to biosensing. Hence the combined use of MXene and NA is becoming increasingly common in biosensor design and development. In this review, MXene- and NA-based biosensors are discussed in terms of their sensing mechanisms and fabrication details. MXenes are introduced from their definition and synthesis process to their characterization followed by their use in NA-mediated biosensor fabrication. The emphasis is placed on the detection of various targets relevant to agricultural and food systems, including microbial pathogens, chemical toxicants, heavy metals, organic pollutants, etc. Finally, current challenges and future perspectives are presented with an eye toward the development of advanced biosensors with improved detection performance.
Collapse
Affiliation(s)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
12
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
13
|
MA Y, HU Y, ZHENG L, CHEN L, ZHAO X, QU F. [Annual review of capillary electrophoresis technology in 2021]. Se Pu 2022; 40:591-599. [PMID: 35791597 PMCID: PMC9404112 DOI: 10.3724/sp.j.1123.2022.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
This paper provides an annual review of capillary electrophoresis (CE) technology in 2021. A total of 291 research papers related to CE technology published in 2021 were retrieved from the ISI Web of Science using the keywords, "capillary electrophoresis-mass spectrometry" "capillary isoelectric focusing" "micellar electrokinetic chromatography", or "capillary electrophoresis" (not "capillary electrochromatography" "microchip" and "capillary monolithic column"). In addition, nine research papers related to CE technology in Chinese journals were reviewed: Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. This review focused on seven papers published in Coordination Chemistry Reviews, Angewandte Chemie-International Edition, Nature Protocols, TrAC-Trends in Analytical Chemistry, and Signal Transduction and Targeted Therapy with impact factors (IFs) greater than 10.0, as well as 42 papers reported in Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry with IFs between 5.0 and 10.0. This review also provides a comprehensive overview of representative CE works in Journal of Chromatography A and Electrophoresis with IFs<5.0, as well as important Chinese journals, Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. According to the IF, this paper introduces the representative work of CE-related papers to allow readers to quickly understand the important research progress of CE technology in the past year.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng QU
- *Tel:(010)68918015,E-mail:(屈锋)
| |
Collapse
|
14
|
Lu Q, Liu Y, Liu Q, Liu J, Yang Q, Tang J, Meng Z, Su Q, Li S, Luo Y. Visual detection of aflatoxin B1 and zearalenone via activating a new catalytic reaction of “naked” DNAzyme. RSC Adv 2022; 12:32102-32109. [DOI: 10.1039/d2ra05683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
It was found for the first time that the catalytic activity of “naked” DNAzyme can be modulated by aflatoxins and zearalenone to generate different color changes, which could be applied to the visual detection for the above two analytes.
Collapse
Affiliation(s)
- Qinrui Lu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Qin Yang
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Zhijun Meng
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qiang Su
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong 637000, P. R. China
| | - Shengmao Li
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Yingping Luo
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| |
Collapse
|