1
|
Yu C, Zhou S, Zhao X, Tang Y, Wang L, Lu B, Meng F, Li B. Multiplex detection of clinical pathogen nucleic acids via a three-way junction structure-based nucleic acid circuit. Anal Bioanal Chem 2023; 415:2173-2183. [PMID: 36928726 PMCID: PMC10019429 DOI: 10.1007/s00216-023-04637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid testing technology has made considerable progress in the last few years. However, there are still many challenges in the clinical application of multiple nucleic acid assays, such as how to ensure accurate results, increase speed and decrease cost. Herein, a three-way junction structure has been introduced to specifically translate analytes of loop-mediated isothermal amplification to a catalytic hairpin assembly. For different analyses, a well-optimized nucleic acid circuit can be directly applied to detection, through only one-component replacement, which only not avoids duplicate sequence design but also saves detection cost. Thanks to this design, multiple and logical analysis can be easily realized in a single reaction with ultra-high sensitivity and selectivity. In this paper, Mycoplasma pneumoniae and Streptococcus pneumoniae can be clearly distinguished from the clinical mixed sample with negative control or one analyte in one tube single fluorescence channel. The fair experimental results of actual clinical samples provide a strong support for the possibility of clinical application of this methodology.
Collapse
Affiliation(s)
- Chunxu Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.,University of Science and Technology China, Hefei, 230026, Anhui, China
| | - Siyan Zhou
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yidan Tang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Lina Wang
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Baiyang Lu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Fanzheng Meng
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China. .,University of Science and Technology China, Hefei, 230026, Anhui, China.
| |
Collapse
|
2
|
Li H, Lu H, Tang Y, Wang H, Xiao Y, Li B. A Rebuilding‐Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N‐in‐1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew Chem Int Ed Engl 2022; 61:e202209496. [DOI: 10.1002/anie.202209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Huiying Lu
- School of Life Sciences Northeast Normal University Changchun Jilin, 130024 China
| | - Yidan Tang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
| | - Huaning Wang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
3
|
Tang L, Liang K, Wang L, Chen C, Cai C, Gong H. Construction of an Ultrasensitive Molecularly Imprinted Virus Sensor Based on an "Explosive" Secondary Amplification Strategy for the Visual Detection of Viruses. Anal Chem 2022; 94:13879-13888. [PMID: 36170349 DOI: 10.1021/acs.analchem.2c02588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viral outbreaks have caused great disruptions to the economy and public health in recent years. The accurate detection of viruses is a key factor in controlling and overcoming epidemics. In this study, an ultrasensitive molecularly imprinted virus sensor was developed based on an "explosive" secondary amplification strategy. Magnetic particles coated with carbon quantum dots (Fe3O4@CDs) were used as carriers and fluorescent probes, while aptamers were introduced into the imprinting layer to enhance the specific recognition of the target virus enterovirus 71 (EV71). When EV71 was captured by the imprinted particles, the fluorescence of the CDs was quenched, especially after binding to the aptamer-modified ZIF-8 loaded with a large amount of phenolphthalein, thereby resulting in signal amplification. Then, when adjusting the pH of the solution to 12, the decomposition of ZIF-8 released phenolphthalein, which turned the solution red, leading to the second "explosive" amplification of the signal. Therefore, the detection of EV71 with ultrasensitivity was achieved, which allows for visual detection by the naked eye in the absence of any instruments. The detection limits for fluorescence and visualization detection were 8.33 fM and 2.08 pM, respectively. In addition, a satisfactory imprinting factor of 5.4 was achieved, and the detection time only needed 20 min. It is expected that this fluorescence-colorimetric dual-mode virus molecularly imprinted sensor will show excellent prospects in epidemic prevention and rapid clinical diagnosis.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Kunsong Liang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lingyun Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Chunyan Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
4
|
Cao H, Mao K, Ran F, Xu P, Zhao Y, Zhang X, Zhou H, Yang Z, Zhang H, Jiang G. Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13245-13253. [PMID: 36040863 PMCID: PMC9454323 DOI: 10.1021/acs.est.2c04727] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Wastewater-based surveillance of the COVID-19 pandemic holds great promise; however, a point-of-use detection method for SARS-CoV-2 in wastewater is lacking. Here, a portable paper device based on CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with excellent sensitivity and specificity was developed for SARS-CoV-2 detection in wastewater. Three primer sets of RT-LAMP and guide RNAs (gRNAs) that could lead Cas12a to recognize target genes via base pairing were used to perform the high-fidelity RT-LAMP to detect the N, E, and S genes of SARS-CoV-2. Due to the trans-cleavage activity of CRISPR/Cas12a after high-fidelity amplicon recognition, carboxyfluorescein-ssDNA-Black Hole Quencher-1 and carboxyfluorescein-ssDNA-biotin probes were adopted to realize different visualization pathways via a fluorescence or lateral flow analysis, respectively. The reactions were integrated into a paper device for simultaneously detecting the N, E, and S genes with limits of detection (LODs) of 25, 310, and 10 copies/mL, respectively. The device achieved a semiquantitative analysis from 0 to 310 copies/mL due to the different LODs of the three genes. Blind experiments demonstrated that the device was suitable for wastewater analysis with 97.7% sensitivity and 82% semiquantitative accuracy. This is the first semiquantitative endpoint detection of SARS-CoV-2 in wastewater via different LODs, demonstrating a promising point-of-use method for wastewater-based surveillance.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
- University of Chinese Academy of
Sciences, Beijing100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Pengqi Xu
- Precision Medicine Center, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen518107,
China
| | - Yirong Zhao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
- University of Chinese Academy of
Sciences, Beijing100049, China
| | - Xiangyan Zhang
- Guizhou Provincial People’s
Hospital, Guiyang550002, China
| | - Hourong Zhou
- Guizhou Provincial People’s
Hospital, Guiyang550002, China
- Jiangjunshan Hospital of Guizhou
Province, Guiyang550001, China
| | - Zhugen Yang
- School of Water, Energy, and Environment,
Cranfield University, CranfieldMK43 0AL,
UK
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and
Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing100085, China
| |
Collapse
|
5
|
Li H, Lu H, Tang Y, Wang H, Xiao Y, Li B. A Rebuilding‐Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N‐in‐1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry 130022 Changchun CHINA
| | - Huiying Lu
- Northeast Normal University School of Life Sciences CHINA
| | - Yidan Tang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry 5625 Remin StreetChangchun 130022 Changchun CHINA
| | - Huaning Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry CHINA
| | - Yao Xiao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Lab of Electroanalytical Chemistry CHINA
| | - Bingling Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Science State Key Lab of Electroanalytical Chemistry 5625 Renmin Street 130022 Changchun CHINA
| |
Collapse
|