1
|
Wu L, Zhu Z, Xue J, Zheng L, Liu H, Ouyang H, Fu Z, He Y. Chemiluminescent/photothermal dual-mode lateral flow immunoassay based on CoFe PBAs/WS 2 nanozyme for rapid and highly sensitive point-of-care testing of gentamicin. Biosens Bioelectron 2024; 265:116711. [PMID: 39186893 DOI: 10.1016/j.bios.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Serious adverse drug reactions of gentamicin (GM) significantly limit its clinical use, thus there is an urgent demand to develop reliable strategies to detect its concentration. In this study, we have developed a novel highly sensitive and portable lateral flow immunoassay (LFIA) based on CoFe PBAs/WS2 nanozyme mediated chemiluminescence (CL) and photothermal (PT) dual-mode POCT biosensor for the detection of GM, which successfully combines sensitive laboratory analyses with portable in situ analyses in the field. In this proof-of-principle work, the dynamic detection ranges of CL-LFIA and PT-LFIA mode were 1 pg mL-1 to 100 ng mL-1 and 50 pg mL-1 to 100 ng mL-1 with the limits of detection of 0.33 and 16.67 pg mL-1, respectively. The whole detection of CL-LFIA and PT-LFIA could be completed within 15 min and 30 min, respectively. The recoveries of GM spiked into complex matrices including milk, urine, and serum for CL-LFIA and PT-LFIA were 90.94%-109.74% and 94.49%-109.31%, respectively, indicating the reliability and applicability of the dual-mode LFIA in real samples. The dual-mode POCT biosensor could effectively overcome the false problems with improving accuracy and sensitivity, enabling user to precisely detect GM by laboratory analysis or on-site analysis depending on the source condition. Due to the complementary properties of CL-LFIA and PT-LFIA, the developed POCT biosensor can effectively ensure high-performance detection, showing the potential application of accurately detecting drug concentration in clinical practice.
Collapse
Affiliation(s)
- Lulu Wu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Zhongjie Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Jinxia Xue
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Liang Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hongmei Liu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
3
|
Xuan Z, Shen W, Liu H, Ni B, Lian Z, Li L, Chen J, Guo B, Wang S, Ye J. One-pot green synthesis of ZIF-8/IgG composite for the precise orientation and protection of antibody and its application in purification and detection of aflatoxins in peanut oil. Food Chem 2024; 449:139272. [PMID: 38604030 DOI: 10.1016/j.foodchem.2024.139272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.
Collapse
Affiliation(s)
- Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Wenjie Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Ziye Lian
- Beijing City University, No.6 Queen's Store Village, Haidian District, Beijing 100094, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Guo Y, Ma C, Gao Z, Wu M, Shen C, Xu Z. Insights into mechanism of peroxymonosufate activation by Mo single-atom catalysts: Singlet oxygen evolution and role of Mo-N coordination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120846. [PMID: 38599079 DOI: 10.1016/j.jenvman.2024.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recently, the Fenton-like reaction using peroxymonosulfate (PMS) has been acknowledged as a potential method for breaking down organic pollutants. In this study, we successfully synthesized a highly efficient and stable single atom molybdenum (Mo) catalyst dispersed on nitrogen-doped carbon (Mo-NC-0.1). This catalyst was then utilized for the first time to activate PMS and degrade bisphenol A (BPA). The Mo-NC-0.1/PMS system demonstrated the ability to completely degrade BPA within just 20 min. Scavenging tests and density functional theory (DFT) calculations have demonstrated that the primary reactive oxygen species was singlet oxygen (1O2) produced by Mo-N4 sites. The self-cycling of Mo facilitated PMS activation and the transition from a free radical activation pathway to a non-radical pathway mediated by 1O2. Simultaneously, the nearby pyridinic N served as adsorption sites to immobilize BPA and PMS molecules. The exceptionally high catalytic activity of Mo-NC-0.1 derived from its unique Mo-N coordination, which markedly reduced the distance for 1O2 to migrate to the BPA molecules. The Mo-NC-0.1/PMS system effectively reduced the acute toxicity of BPA and exhibited excellent cycling stability with minimal leaching. This study presented a new catalyst with high selectivity for 1O2 generation and provided valuable insights for the application of single atom catalysts in PMS-based AOPs.
Collapse
Affiliation(s)
- Yajie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Chenyang Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Zhiyuan Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Mingzhen Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Changchang Shen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| |
Collapse
|
5
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
6
|
Li H, Shang Q, Zhang L, Mao J, Zhang Q, Li P. Europium nanospheres based ultrasensitive fluorescence immunosensor for aflatoxin B1 determination in feed. Talanta 2024; 270:125569. [PMID: 38141463 DOI: 10.1016/j.talanta.2023.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this work, a new competitive immunosensor for aflatoxin B1 (AFB1) detection was developed using europium (Eu) fluorescent nanospheres and magnetic beads. Firstly, Eu nanospheres were synthesized through two steps including carboxylated polystyrene nanospheres and Eu-doped polystyrene nanospheres preparation. Then Eu nanospheres were covalently tagged to anti-AFB1 monoclonal antibody (anti-AFB1 mAb) through an EDC coupling method. Carboxylated Fe3O4 magnetic beads were conjugated to AFB1-BSA through EDC/NHS crosslinking to obtain AFB1-BSA-Fe3O4. In the absence of AFB1, Eu-anti-AFB1 mAb were incubated with AFB1-BSA-Fe3O4 to form Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 in PBS buffer. However, in the presence of AFB1, the competitive interaction of AFB1 and AFB1-BSA-Fe3O4 to bind with Eu-anti-AFB1 mAb occurred. With the increasing concentration of AFB1, less Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 formed. So the fluorescence intensity of Eu-anti-AFB1 mAb-AFB1-BSA-Fe3O4 was gradually decreased after magnetic separation. The degree of fluorescence decrease was linear with respect to the logarithm of AFB1 concentration in the range of 0.01-2 ng/mL in both buffer solution and feed samples and the detection limit was 0.003 ng/mL. What's more, the immunosensor showed excellent specificity for AFB1 without being interfered by other mycotoxins. In consideration of the excellent performance of this immunosensor, we can speculate that the proposed method could be widely used in detecting food contaminants.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Qingyu Shang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
7
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Wu S, Xia J, Li R, Cao H, Ye D. Perspectives for the Role of Single-Atom Nanozymes in Assisting Food Safety Inspection and Food Nutrition Evaluation. Anal Chem 2024; 96:1813-1824. [PMID: 38271678 DOI: 10.1021/acs.analchem.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single-atom nanozymes (SAzymes) have been greatly developed for rapid detection, owing to their rich active sites and excellent catalytic activity. Although several excellent reviews concentrating on SAzymes have been reported, they mainly focused on advanced synthesis, sensing mechanisms, and biomedical applications. To date, few reviews elaborate on the promising applications of SAzymes in food safety inspection and food nutrition evaluation. In this paper, we systematically reviewed the enzyme-like activity of SAzymes and the catalytic mechanism, in addition to recent research advances of SAzymes in the domain of food safety inspection and food nutrition evaluation in the past few years. Furthermore, current challenges hampering practical applications of SAzymes in food assay are summarized and analyzed, and possible research areas focusing on SAzyme-based sensors in rapid food testing are also proposed.
Collapse
Affiliation(s)
- Shuo Wu
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
| | - Jianing Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Rui Li
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
9
|
Lei J, Zhang L, Li M, Liu W, Jin Y, Li B. Surface Oxygen Vacancy-Rich Co 3O 4 Nanowires as an Effective Catalyst of Luminol-H 2O 2 Chemiluminescence for Sensitive Immunoassay. Anal Chem 2023; 95:17937-17944. [PMID: 37991222 DOI: 10.1021/acs.analchem.3c04409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oxygen vacancy is one intrinsic defect in metal oxide materials. Interestingly, we herein found that the surface oxygen vacancy can significantly enhance the catalytic activity of Co3O4 nanowires in the luminol-H2O2 chemiluminescence (CL) reaction. 0.1 ng/mL Co3O4 nanowires containing 51.3% surface oxygen vacancies possessed ca. 2.5-fold catalytic activity of free Co2+ (the best metal ionic catalyst for the luminol-H2O2 CL reaction). The superior catalytic efficiency is attributed to the enhanced adsorption of H2O2 by surface oxygen vacancies, which in turn accelerates the cleavage of O-O bonds and generates •OH radicals. More importantly, the surface oxygen vacancy-rich Co3O4 nanowires retained about 90% catalytic activity after modification with antibodies. The surface oxygen vacancy-rich Co3O4 nanowires were used to label the secondary antibody, and one sandwich-type CL immunoassay of carcinoembryonic antigen was established. The detection limit was 0.3 ng/mL with a linear range of 1-10 ng/mL. This proof-of-concept work proves that surface oxygen vacancy-rich Co3O4 nanowires are suitable for labeling biomolecules in CL bioanalysis and biosensing.
Collapse
Affiliation(s)
- Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Mei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
10
|
Xian J, Huang J, Bai R, Xue J, Fu Z, Ouyang H. Layer Growth Inhibiting Strategy for Superior-Loading Atomic Metal Sites on Ultrathin Layered Double Hydroxides as the Efficient Chemiluminescence Probes. Anal Chem 2023. [PMID: 38016786 DOI: 10.1021/acs.analchem.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Owing to the remarkable catalytic attributes, single-atom catalysts (SACs) have exhibited promising application prospects as the substitutes of natural enzymes. However, the low loading amount of atomic sites on typical SACs (no more than 5 wt %) significantly restricts their increased capability. Hereby, a layer growth inhibitor protocol was attempted to optimize anchoring isolated Co atoms efficiently on ultrathin monolayer layered double hydroxides (LDHs). Superior to the conventional multiple-layer LDHs, the synthesized monolayer LDHs (7.29 nm-thick) served as the emerging support for dispersing substantial active sites and featured a dramatic loading content of 32.5 wt %. Through X-ray absorption spectroscopy, the atomically dispersed active centers on Co SACs were verified as Co-N4 moieties. The results of radical scavenger experiments and electron paramagnetic resonance spectroscopy showed that Co SACs were favorable to the high yield of reactive oxygen species originating from the decomposition of H2O2. Therefore, Co SACs functioned as a sensitive enhancer to drastically boost the luminol-H2O2 chemiluminescence intensity by ∼4713-fold, which excelled drastically over these previously reported SACs. Furthermore, Co SACs were adopted as chemiluminescent probes for the quantitation of chlorothalonil, wherein a low detection limit of 49 pg mL-1 (3σ) was achieved. Additionally, the successful application in recovery trials demonstrated the favorable feasibility of Co SACs. The facile layer growth inhibitor protocol affords SACs with improved loading properties and even superior catalytic performances for sensitive luminescent bioassays.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ruining Bai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
12
|
Li F, Hou L, Liu W, Jin Y, Lu J, Li B. Carbon Vacancy-Enhanced Activity of Fe-N-C Single Atom Catalysts toward Luminol Chemiluminescence in the Absence of H 2O 2. Anal Chem 2023; 95:16021-16028. [PMID: 37843973 DOI: 10.1021/acs.analchem.3c03972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The classic luminol-H2O2 chemiluminescence (CL) systems suffer from easy self-decomposition of H2O2 at room temperature, hindering the practical applications of the luminol-H2O2 CL system. In this work, unexpectedly, we found that the carbon vacancy-modified Fe-N-C single atom catalysts (VC-Fe-N-C SACs) can directly trigger a luminol solution to generate strong CL emission in the absence of H2O2. The Fe-based SACs were prepared through the conventional pyrolysis of zeolitic imidazolate frameworks. The massive carbon vacancies were readily introduced into Fe-N-C SACs through a tannic acid-etching process. Carbon vacancy significantly enhanced the catalytic activity of Fe-N-C SACs on the CL reaction of luminol-dissolved oxygen. The VC-Fe-N-C SACs performed a 13.4-fold CL enhancement compared with the classic luminol-Fe2+ system. It was found that the introduction of a carbon vacancy could efficiently promote dissolved oxygen to convert to reactive oxygen species. As a proof of concept, the developed CL system was applied to detect alkaline phosphatase with a linear range of 0.005-1 U/L as well as a detection limit of 0.003 U/L. This work demonstrated that VC-Fe-N-C SAC is a highly efficient CL catalyst that can promote the analytic application of the luminol CL system.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Hou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jiangbo Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
13
|
Zhang D, Kukkar D, Kaur H, Kim KH. Recent advances in the synthesis and applications of single-atom nanozymes in food safety monitoring. Adv Colloid Interface Sci 2023; 319:102968. [PMID: 37582302 DOI: 10.1016/j.cis.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Nanozymes are synthetic compounds with enzyme-like tunable catalytic properties. The success of nanozymes for catalytic applications can be attributed to their small dimensions, cost-effective synthesis, appreciable stability, and scalability to molecular dimensions. The emergence of single atom nanozymes (SANzymes) has opened up new possibilities in bioanalytical applications. In this regard, this review outlines enzyme-mimicking features of SANzymes for food safety applications in relation to the key variables controlling their catalytic performance. The discussion is extended further to cover the applications of SANzymes for the monitoring of various compounds/biomaterials of significance with respect to food safety (e.g., pesticides, veterinary drug residues, foodborne pathogenic bacteria, mycotoxins/bacterial endotoxin, antioxidant residues, hydrogen peroxide residues, and heavy metal ions). Furthermore, the performance of SANzymes is evaluated in terms of various performance metrics such as limit of detection (LOD), linear dynamic range, and figure of merit (FoM). The challenges and future road map for the applications of SANzymes are also addressed along with their upscaling in the area of food safety.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Harsimran Kaur
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Li J, Li Y, Wu K, Deng A, Li J. Ultra-sensitive detection of 5-fluorouracil by flow injection chemiluminescence immunoassay based on Fenton-like effect of single atom Co nanozyme. Talanta 2023; 265:124870. [PMID: 37418955 DOI: 10.1016/j.talanta.2023.124870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Single atom nanozymes (SAzymes) are considered as the most hopeful candidates for replacing natural enzymes. In this work, a flow-injection chemiluminescent immunoassay (FI-CLIA) based on a Fenton-like activity single atom cobalt nanozyme (Co SAzyme) was developed for the rapid and sensitive detection of 5-fluorouracil (5-Fu) in serum for the first time. Co SAzyme was prepared by an in-situ etching method at room temperature using ZIF-8 metal-organic frameworks (ZIF-8 MOFs). With excellent chemical stability and ultra-high porosity of ZIF-8 MOFs as the core, Co SAzyme presents high Fenton-like activity which can catalyze the decomposition of H2O2 to produce large amounts of superoxide radical anions, thus effectively amplifying the chemiluminescence of the Luminol-H2O2 system. In addition, carboxyl-modified resin beads were used as the substrate to load more antigens due to its advantages of good biocompatibility and large specific surface area. Under optimal conditions, the detection range of 5-Fu was 0.001-1000 ng mL-1 with a limit of detection of 0.29 pg mL-1 (S/N = 3). Furthermore, the immunosensor was successfully applied for the detection of 5-Fu in human serum samples with satisfactory results, displaying the potential application of this strategy for bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Youju Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
15
|
Sung YH, Wu CL, Huang JH, Tsai DH. Real-Time Quantifying Microdroplet Synthesis of Metal-Organic Framework Colloids Using Gas-Phase Electrophoresis. Anal Chem 2023; 95:4513-4520. [PMID: 36787537 DOI: 10.1021/acs.analchem.2c05511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A hyphenated electrospray-differential mobility analysis (ES-DMA) was developed for providing a high-resolution, real-time quantitative analysis on the metal-organic framework (MOF) colloids produced via the concept of microfluidic flow chemistry. Zeolitic imidazolate framework-8 was chosen as the representative MOF of the study. The results show that the physical size and number concentration of the MOF colloid were successfully characterized by the hyphenated ES-DMA during the microdroplet synthetic process, with 3 nm and 4% of measurement uncertainties, respectively. The effects of the synthetic temperature and the molar ratio of the organic linker to metal precursor were investigated, providing an opportunity for accurate control on the particle size (100-200 nm) of the microdroplet-synthesized MOF. The work demonstrates a powerful approach for the real-time quality assurance and material optimization in microdroplet synthesis of colloidal MOFs.
Collapse
Affiliation(s)
- Yi-Hsuan Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Ching-Ling Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
16
|
Li J, Yang M, Cao D, Zhang L, Zong C, Li P. Ultrasensitive Homogeneous Detection of PCSK9 and Efficacy Monitoring of the PCSK9 Inhibitor Based on Proximity Hybridization-Dependent Chemiluminescence Imaging Immunoassay. Anal Chem 2023; 95:5428-5435. [PMID: 36812301 DOI: 10.1021/acs.analchem.3c00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Accurate quantification of proprotein convertase subtilisin/kexin type 9 (PCSK9) in serum before and after the medication is helpful in grasping the evolution of PCSK9-related disease and evaluating the efficacy of PCSK9 inhibitors. Conventional approaches for PCSK9 quantification suffered from complicated operations and low sensitivity. By integrating stimuli-responsive mesoporous silica nanoparticles, dual-recognition proximity hybridization, and T7 exonuclease-assisted recycling amplification, a novel homogeneous chemiluminescence (CL) imaging approach was proposed for ultrasensitive and convenient immunoassay of PCSK9. Owing to the intelligent design and signal amplification property, the whole assay was conducted without separation and rinsing, significantly simplifying the procedure and eliminating the errors associated with the professional operation; meanwhile, it showed linear ranges over 5 orders of magnitude and detection limit as low as 0.7 pg mL-1. Parallel testing was allowed due to the imaging readout, which brought a maximum throughput of 26 tests h-1. The proposed CL approach was applied to analyze PCSK9 from hyperlipidemia mice before and after the intervention of the PCSK9 inhibitor. Serum PCSK9 levels in the model group and the intervention group could be distinguished efficiently. The results were reliable compared to commercial immunoassay results and histopathologic findings. Thus, it could facilitate the monitoring of the serum PCSK9 level and the lipid-lowering effect of the PCSK9 inhibitor, showing promising potential in bioanalysis and pharmaceuticals.
Collapse
Affiliation(s)
- Jialing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Muqiu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Cao
- Nanjing Poclight Biotechnology Co., Ltd., Nanjing 210032, P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Kaladari F, El-Maghrabey M, Kishikawa N, Kuroda N. Development of signal multiplication system for quinone linked immunosorbent assay (Multi-QuLISA) by using poly-l-lysine dendrigraft and 1,2-naphthoquinone-4-sulfonate as enzyme-free tag. Talanta 2023; 253:123911. [PMID: 36137493 DOI: 10.1016/j.talanta.2022.123911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
A sensitive and stable signal multiplied quinone-linked immunosorbent assay (Multi-QuLISA) was developed. In Multi-QuLISA, an oligomerized quinone linked to biotin, namely biotin-8mer-naphthoquinone (Bio8mer-NQ), is used as a signal-generating label. Bio8mer-NQ is formed from a dendrigraft poly-l-lysine generation 1 (DPLL G1), a controlled branched oligomer composed of eight lysine moieties with nine free amino groups as a backbone. One of the nine amino groups of DPLL G1 is attached to biotin moiety, while the other eight are attached to 1,2-naphthoquinone-4-sulfonate (NQS). Bio8mer-NQ labels a biotinylated detection antibody using avidin as a co-binder. Then, multi-quinones in Bio8mer-NQ undergo a redox cycle with dithiothreitol and luminol, generating strong chemiluminescence. Standard ELISA uses a label enzyme that suffers from vulnerability in different conditions and poor stability. Bio8mer-NQ showed better stability than the enzyme (biotin-HRP) under different drastic pH and temperature conditions, hydrolytic enzymes, etc. Furthermore, Bio8mer-NQ was used as both chemiluminescence and colorimetric label based on the redox cycle of quinone, and it had LODs of 1.5 and 6.5 nM, respectively. The method could detect biotinylated immunocomplex in an in-house designed immunoassay down to 0.2 nM, which is about 25 times more sensitive than biotin HRP. Eventually, Bio8mer-NQ was applied successfully in Multi-QuLISA for detecting β-casein with a sensitivity of 3.2 ng/mL, while the conventional ELISA had an LOD of 35 ng/mL. Overall, Bio8mer-NQ is a stable compound that could be used as an excellent replacement for the enzyme in immunoassay and can be used in both colorimetric and chemiluminescence assays with good sensitivity.
Collapse
Affiliation(s)
- Fatema Kaladari
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
18
|
Zhang W, Li S, Zhou A, Li M. Chemical Cyclic Amplification: Hydroxylamine Boosts the Fenton Reaction for Versatile and Scalable Biosensing. Anal Chem 2023; 95:1764-1770. [PMID: 36576311 DOI: 10.1021/acs.analchem.2c05181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleic acid detection is undoubtedly one of the most important research fields to meet the medical needs of genetic disease diagnosis, cancer treatment, and infectious disease prevention. However, the practical detection methods based on biological amplification are complex and time-consuming and require highly trained operators. Herein, we report a simple, rapid, and sensitive method for the nucleic acid assay by fluorescence or naked eye using chemical cyclic amplification. The addition of hydroxylamine (HA) during the Fenton reaction can continuously generate hydroxyl radicals (•OH) via Fe3+/Fe2+ cycle, termed as "hydroxylamine boosts the Fenton reaction (Fenton-HA system)". Meanwhile, the reducing substances, such as terephthalic acid or o-phenylenediamine, react with •OH to generate oxidized substances that can be recognized by the naked eye or detected by fluorescence so as to realize the detection of Fe3+. The concentration of Fe3+ has a good linear relationship with fluorescence intensity in the range of 0.1 to 100 nM, and the limit of detection is calculated to be 0.03 nM (S/N = 3). Subsequently, Fe was introduced into the nucleic acid hybridization system after the Fe source was transformed into Fe3+, and the nucleic acids were indirectly determined by this method. This Fenton-HA system was used for sensing HIV-DNA and miRNA-21 to verify the validity of this method in nucleic acid detection. The detection limits were as low as 2.5 pM for HIV-DNA and 3 pM for miRNA-21. We believe that our work has unlocked an efficient signal amplification strategy, which is expected to develop a new generation of highly sensitive chemical biosensors.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Shuzhen Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Ani Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Maoguo Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| |
Collapse
|
19
|
Lei J, Sun X, Jin Y, Xu C, Li B. Atomic Dispersion of Zn 2+ on N-Doped Carbon Materials: From Non-Activity to High Activity for Catalyzing Luminol-H 2O 2 Chemiluminescence. Anal Chem 2022; 94:17559-17566. [PMID: 36473046 DOI: 10.1021/acs.analchem.2c03902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fe and Co single-atom catalysts (SACs) have been widely explored in many fields, while Zn SACs are still in their infancy stage. Herein, we unexpectedly found that atomically dispersed Zn2+ on N-doped carbon material (Zn-N-C) exhibited high catalytic activity on luminol-H2O2 chemiluminescence (CL) reaction. The Zn-N-C SACs were readily prepared through simple pyrolyzation of the cheap precursors (dopamine and ZnCl2). The mechanism of Zn SAC-catalyzed CL reaction of luminol-H2O2 was investigated in detail. The activity of Zn SACs originated from the Zn-N sites in the Zn-N-C structure. The monoatomic dispersion makes Zn2+ catalytic performance change from no activity to high activity in luminol-H2O2 CL reaction. This study demonstrated the particularity of the monatomic metal catalyst over the conventional metal ion. This work provides the unprecedented perspective for design of new metal SACs in CL reaction.
Collapse
Affiliation(s)
- Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoqing Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chunli Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
20
|
Liu J, Chen C, Chen H, Huang C, Ren Q, Sun M, Tao J, Lin B, Zhao P. Brain Glucose Activated MRI Contrast Agent for Early Diagnosis of Alzheimer’s Disease. Anal Chem 2022; 94:16213-16221. [DOI: 10.1021/acs.analchem.2c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods. Molecules 2022; 27:molecules27217511. [DOI: 10.3390/molecules27217511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Mycotoxins in food are hazardous for animal and human health, resulting in food waste and exacerbating the critical global food security situation. In addition, they affect commerce, particularly the incomes of rural farmers. The grave consequences of these contaminants require a comprehensive strategy for their elimination to preserve consumer safety and regulatory compliance. Therefore, developing a policy framework and control strategy for these contaminants is essential to improve food safety. In this context, sensing approaches based on metal-organic frameworks (MOF) offer a unique tool for the quick and effective detection of pathogenic microorganisms, heavy metals, prohibited food additives, persistent organic pollutants (POPs), toxins, veterinary medications, and pesticide residues. This review focuses on the rapid screening of MOF-based sensors to examine food safety by describing the main features and characteristics of MOF-based nanocomposites. In addition, the main prospects of MOF-based sensors are highlighted in this paper. MOF-based sensing approaches can be advantageous for assessing food safety owing to their mobility, affordability, dependability, sensitivity, and stability. We believe this report will assist readers in comprehending the impacts of food jeopardy exposure, the implications on health, and the usage of metal-organic frameworks for detecting and sensing nourishment risks.
Collapse
|
22
|
Ouyang H, Yuan H, Huang J, Xian J, Wang W, Fu Z. CoN4-supported Co2N metal clusters for developing sensitive chemiluminescent immunochromatographic assays. Anal Chim Acta 2022; 1232:340478. [DOI: 10.1016/j.aca.2022.340478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
23
|
Xian J, Luo S, Xue J, Zhang L, Fu Z, Ouyang H. Synergetic Dual-Site Atomic Catalysts for Sensitive Chemiluminescent Immunochromatographic Test Strips. Anal Chem 2022; 94:11449-11456. [PMID: 35938606 DOI: 10.1021/acs.analchem.2c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|