1
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
3
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, Shi A, Wu J. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surf B Biointerfaces 2024; 234:113758. [PMID: 38241892 DOI: 10.1016/j.colsurfb.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Currently, cancer poses a significant health challenge in the medical community. Traditional chemotherapeutic agents are often accompanied by toxic side effects and limited therapeutic efficacy, restricting their application and advancement in cancer treatment. Therefore, there is an urgent need for developing intelligent drug release systems. Mesoporous silica nanoparticles (MSNs) have many advantages, such as a large specific surface area, substantial pore volume and size, adjustable mesoporous material pore size, excellent biocompatibility, and thermodynamic stability, making them ideal carriers for drug delivery and release. Additionally, they have been widely used to develop novel anticancer drug carriers. Recently, MSNs have been employed to design responsive systems that react to the tumor microenvironment and external stimuli for controlled release of anticancer drugs. This includes factors within the intratumor environment, such as pH, temperature, enzymes, and glutathione as well as external tumor stimuli, such as light, magnetic field, and ultrasound, among others. In this review, we discuss the research progress on environmental stimulus-responsive MSNs in anticancer drug delivery systems, including internal and external environment single stimulus-responsive release and combined stimulus-responsive release. We also summarize the current challenges associated with environmental stimulus-responsive MSNs and elucidate future directions, providing a reference for the functionalization modification and practical application of these MSNs.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jiaxin Chen
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jinjia Zhang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Qiuqiong Yang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ji Cui
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Anhua Shi
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Junzi Wu
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
5
|
Jiang X, Yi L, Li C, Wang H, Xiong W, Li Y, Zhou Z, Shen J. Mitochondrial Disruption Nanosystem Simultaneously Depressed Programmed Death Ligand-1 and Transforming Growth Factor-β to Overcome Photodynamic Immunotherapy Resistance. ACS NANO 2024; 18:3331-3348. [PMID: 38227812 DOI: 10.1021/acsnano.3c10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-β (TGF-β) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-β simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-β, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-β codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
6
|
Sun Z, Ren Y, Zhu W, Xiao Y, Wu H. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. Analyst 2024; 149:599-613. [PMID: 38221846 DOI: 10.1039/d3an01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nucleic acids, including DNA and RNA, have been considered as powerful and functional biomaterials owing to their programmable structure, good biocompatibility, and ease of synthesis. However, traditional nucleic acid-based probes have always suffered from inherent limitations, including restricted cell internalization efficiency and structural instability. In recent years, DNA nanotechnology has shown great promise for the applications of bioimaging and drug delivery. The attractive superiorities of DNA nanostructures, such as precise geometries, spatial addressability, and improved biostability, have enabled them to be a novel category of nucleic acid delivery systems for biomedical applications. In this review, we introduce the development of DNA nanotechnology, and highlight recent advances of DNA nanostructure-based delivery systems for cellular imaging and therapeutic applications. Finally, we propose the challenges as well as opportunities for the future development of DNA nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Zhaorong Sun
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
7
|
Yao Y, Wang Y, Zhu J, Guo Z, Li Z, Li Q, Liu S, Wang Y, Yu J, Huang J. A spatially-controlled DNA triangular prism nanomachine for AND-gated intracellular imaging of ATP in acidic microenvironment. Mikrochim Acta 2023; 190:436. [PMID: 37837554 DOI: 10.1007/s00604-023-06010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
A DNA triangular prism nanomachine (TPN)-based logic device for intracellular AND-gated imaging of adenosine triphosphate (ATP) has been constructed. By using i-motif sequences and ATP-binding aptamers as logic control units, the TPN logic device is qualified to respond to the acidic environment and ATP in cancer cell lysosomes. Once internalized into the lysosome, the specific acidic microenvironment in lysosome causes the i-motif sequence to fold into a tetramer, resulting in compression of DNA tri-prism. Subsequently, the split ATP aptamer located at the tip of the collapsed triangular prism binds stably to ATP, which results in the fluorescent dyes (Cy3 and Cy5) modified at the ends of the split aptamer being in close proximity to each other, allowing Förster Resonance Energy Transfer (FRET) to occur. The FRET signals are excited at a wavelength of 543 nm and can be collected within the emission range of 646-730 nm. This enables the precise imaging of ATP within a cell. We also dynamically operate AND logic gates in living cells by modulating intracellular pH and ATP levels with the help of external drugs. Owing to the AND logic unit on TPN it can simultaneously recognize two targets and give corresponding intelligent logic judgment via imaging signal output. The accuracy of molecular diagnosis of cancer can be improved thus eliminating the false positive signal of single target-based detection. Hence, this space-controlled TPN-based logical sensing platform greatly avoids sensitivity to extracellular targets during the cell entry process, providing a useful tool for high-precision imaging of the cancer cell's endogenous target ATP.
Collapse
Affiliation(s)
- Yuying Yao
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yeru Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jingru Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zongqiang Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qianru Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
8
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
9
|
Fang L, Shi C, Wang Y, Xiong Z, Wang Y. Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials. J Nanobiotechnology 2023; 21:290. [PMID: 37612757 PMCID: PMC10464147 DOI: 10.1186/s12951-023-02071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
DNA nanoparticles hold great promise for a range of biological applications, including the development of cutting-edge treatments and diagnostic tests. Their subnanometer-level addressability enables precise, specific modifications with a variety of chemical and biological entities, making them ideal as diagnostic instruments and carriers for targeted delivery. This paper focuses on the potential of DNA nanomaterials, which offer scalability, programmability, and functionality. For example, they can be engineered to provide highly specific biosensing and bioimaging capabilities and show promise as a platform for disease diagnosis and treatment. Successful operation of various biomedical nanomaterials has been demonstrated both in vitro and in vivo. However, there are still significant challenges to overcome, including the need to improve the scalability and reliability of the technology, and to ensure safety in clinical applications. We discuss these challenges and opportunities in detail and highlight the progress and prospects of DNA nanotechnology for biomedical applications.
Collapse
Affiliation(s)
- Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Mathur D, Galvan AR, Green CM, Liu K, Medintz IL. Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art. NANOSCALE 2023; 15:2516-2528. [PMID: 36722508 PMCID: PMC10407680 DOI: 10.1039/d2nr05868e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Angelica Rose Galvan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Kevin Liu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
11
|
Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int J Pharm 2023; 632:122543. [PMID: 36572263 DOI: 10.1016/j.ijpharm.2022.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor receptor-1 (TNFR1) and DEK are closely associated with the development of rheumatoid arthritis (RA). Taking advantage of the high adenosine triphosphate (ATP) in RA microenvironment and the interactions of DNA aptamers with their targets, an ATP-responsive DNA nanodrug was constructed that simultaneously targets TNFR1 and DEK for RA therapy. To this end, DEK target aptamer DTA and TNFR1 target aptamer Apt1-67 were equipped with sticky ends to hybridize with ATP aptamer (AptATP) and fabricated DNA nanodrug DAT. Our results showed that DAT was successfully prepared with good stability. In the presence of ATP, DAT was disassembled, resulting in the release of DTA and Apt1-67. In vitro studies demonstrated that DAT was superior to the non-responsive DNA nanodrug TD-3A3T in terms of anti-inflammation activity and ATP was inevitable to maximize the anti-inflammation ability of DAT. The superior efficacy of DAT is attributed to the more potent inhibition of caspase-3 and NETs formation. In vivo results further confirmed the anti-RA efficacy of DAT, whereas the administration routes (intravenous injection and transdermal administration via microneedles) did not cause significant differences. Overall, the present study supplies an intelligent strategy for RA therapy and explores a promising administration route for future clinical medication of RA patients.
Collapse
|
12
|
|
13
|
Chen Y, Shi S. Advances and prospects of dynamic DNA nanostructures in biomedical applications. RSC Adv 2022; 12:30310-30320. [PMID: 36337940 PMCID: PMC9590593 DOI: 10.1039/d2ra05006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has broken many limitations of static DNA nanostructures, making precise, remote, and reversible control possible. DDNs are intelligent nanostructures with certain dynamic behaviors that are capable of responding to specific stimuli. The responsible stimuli of DDNs include exogenous metal ions, light, pH, etc., as well as endogenous small molecules such as GSH, ATP, etc. Due to the excellent stimulus responsiveness and other superior physiological characteristics of DDNs, they are now widely used in biomedical fields. For example, they can be applied in the fields of biosensing and bioimaging, which are able to detect biomarkers with greater spatial and temporal precision to help disease diagnosis and live cell physiological function studies. Moreover, they are excellent intelligent carriers for drug delivery in treating cancer and other diseases, achieving controlled release of drugs. And they can promote tissue regeneration and regulate cellular behaviors. Although some challenges need further study, such as the practical value in clinical applications, DDNs have shown great potential applications in the biomedical field. With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has great potential applications in the biomedical field.![]()
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| |
Collapse
|