1
|
Adedokun G, Alipanah M, Fan ZH. Sample preparation and detection methods in point-of-care devices towards future at-home testing. LAB ON A CHIP 2024; 24:3626-3650. [PMID: 38952234 PMCID: PMC11270053 DOI: 10.1039/d3lc00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.
Collapse
Affiliation(s)
- George Adedokun
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Zhang YP, Bu JW, Shu RX, Liu SL. Advances in rapid point-of-care virus testing. Analyst 2024; 149:2507-2525. [PMID: 38630498 DOI: 10.1039/d4an00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Ru-Xin Shu
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
3
|
Kim TH, Park JY, Jung J, Sung JS, Kwon S, Bae HE, Shin HJ, Kang MJ, Jose J, Pyun JC. A one-step immunoassay based on switching peptides for diagnosis of porcine epidemic diarrhea virus (PEDV) using screened Fv-antibodies. J Mater Chem B 2024; 12:3751-3763. [PMID: 38532694 DOI: 10.1039/d4tb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
4
|
Zhang Y, Gao L, Han J, Miao X. Dual-signal and one-step monitoring of Staphylococcus aureus in milk using hybridization chain reaction based fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123191. [PMID: 37517267 DOI: 10.1016/j.saa.2023.123191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Food-borne pathogens in dairy products that was contaminated from raw ingredients or improper food handling can cause a major threaten to human health. Here, to construct the pathogens detection, a dual-signal readout fluorescent switching sensor was designed for one-step determination of Staphylococcus aureus (S. aureus), which was a marker of food contamination. Graphene oxide (GO) was used as a fluorescence quencher, while fluorophore-labeled hairpin DNA was used as a donor, resulting in fluorescence resonance energy transfer (FRET) from the fluorophore to GO (signal off). Enzyme-free hybridization chain reaction could generate remarkable signal amplification, which avoided the nonspecific desorption caused by any enzymatic proteins in GO surface. With the strong binding ability of aptamer to S. aureus, a long bifluorescent molecules-labeled double-stranded DNA product was formed, bringing in dual-signal readout responses (signal on). Consequently, a reliable, sensitive and selective sensor was obtained for one-step quantification of S. aureus concentration from 10 to 108 CFU/mL with a detection limit of 1 CFU/mL. Furthermore, satisfactory stability, reproducibility, specificity and good recovery efficiency in milk samples revealed that the proposed sensor could be served as a prospective tool for food safety analysis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China.
| | - Liang Gao
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Jing Han
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Xu Z, Liu X, Zong C, Zhang Q, Gai H. Homogeneous immunoassay utilizing fluorescence resonance energy transfer from quantum dots to tyramide dyes deposited on full immunocomplexes. Analyst 2023; 148:4877-4884. [PMID: 37642356 DOI: 10.1039/d3an01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
There is an urgent need for homogeneous immunoassays that offer sufficient sensitivity for routine clinical practice. In this study, we have developed a highly sensitive, fluorescence resonance energy transfer (FRET)-based homogeneous immunoassay. Unlike previous FRET-based homogeneous immunoassays, where acceptors were attached to antibody molecules located far from the donor, we employed acceptors to label the entire sandwich-structured immunocomplex, including two antibodies and one antigen. As a result, the FRET signal was amplified by a factor of 10, owing to the reduced distance between the donor and acceptors. We validated our method by quantifying carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) in PBS buffer and blank plasma. The limits of detection (LOD) for CEA and AFP in both PBS buffer and blank plasma were comparable, reaching sub-femtomolar levels. Furthermore, we successfully quantified CEA and AFP in three human plasma samples, thereby confirming the reliability of our method for clinical applications.
Collapse
Affiliation(s)
- Zihan Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Kim TH, Bong JH, Kim HR, Shim WB, Kang MJ, Pyun JC. One-step immunoassay based on switching peptides for analyzing ochratoxin A in wines. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA one-step immunoassay is presented for the detection of ochratoxin A (OTA) using an antibody complex with switching peptides. Because the switching peptides (fluorescence-labeled) were able to bind the frame region of antibodies (IgGs), they were dissociated from antibodies immediately when target analytes were bound to the binding pockets of antibodies. From the fluorescence signal measurements of switching peptides, a quantitative analysis of target analytes, via a one-step immunoassay without any washing steps, could be performed. As the first step, the binding constant (KD) of OTA to the antibodies was estimated under the continuous flow conditions of a surface plasmon resonance biosensor. Then, the optimal switching peptide, among four types of switching peptides, and the reaction condition for complex formation with the switching peptide were determined for the one-step immunoassay for OTA analysis. Additionally, the selectivity test of one-step immunoassay for OTA was carried out in comparison with phenylalanine and zearalenone. For the application to the one-step immunoassay to detect OTA in wines, two types of sample pre-treatment methods were compared: (1) a liquid extraction was carried out using chloroform as a solvent with subsequent resuspension in phosphate-buffered saline (total analysis time < 1 h); (2) direct dilution of the wine sample (total analysis time < 0.5 h). Finally, the direct dilution method was found to be effective for the one-step immunoassay based on the switching peptide assay for OTA in wines with a markedly improved total analysis time (< 0.5 h). Additionally, the assay results were compared with commercial lateral flow immunoassay.
Collapse
|