1
|
Xie Y, Rong Q, Mao F, Wang S, Wu Y, Liu X, Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Engineering the pore environment of antiparallel stacked covalent organic frameworks for capture of iodine pollutants. Nat Commun 2024; 15:2671. [PMID: 38531870 DOI: 10.1038/s41467-024-46942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Radioiodine capture from nuclear fuel waste and contaminated water sources is of enormous environmental importance, but remains technically challenging. Herein, we demonstrate robust covalent organic frameworks (COFs) with antiparallel stacked structures, excellent radiation resistance, and high binding affinities toward I2, CH3I, and I3- under various conditions. A neutral framework (ACOF-1) achieves a high affinity through the cooperative functions of pyridine-N and hydrazine groups from antiparallel stacking layers, resulting in a high capacity of ~2.16 g/g for I2 and ~0.74 g/g for CH3I at 25 °C under dynamic adsorption conditions. Subsequently, post-synthetic methylation of ACOF-1 converted pyridine-N sites to cationic pyridinium moieties, yielding a cationic framework (namely ACOF-1R) with enhanced capacity for triiodide ion capture from contaminated water. ACOF-1R can rapidly decontaminate iodine polluted groundwater to drinking levels with a high uptake capacity of ~4.46 g/g established through column breakthrough tests. The cooperative functions of specific binding moieties make ACOF-1 and ACOF-1R promising adsorbents for radioiodine pollutants treatment under practical conditions.
Collapse
Affiliation(s)
- Yinghui Xie
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Qiuyu Rong
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Fengyi Mao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Shiyu Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - You Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China.
| | | | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P.R. China.
| |
Collapse
|
2
|
Determination of 129I in waters associated with coalbed methane using solvent extraction and accelerator mass spectrometry measurement. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|