1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Park I, Kim S, Brenden CK, Shi W, Iyer H, Bashir R, Vlasov Y. Highly Localized Chemical Sampling at Subsecond Temporal Resolution Enabled with a Silicon Nanodialysis Platform at Nanoliter per Minute Flows. ACS NANO 2024; 18:6963-6974. [PMID: 38378186 PMCID: PMC10919076 DOI: 10.1021/acsnano.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100 μm spatial resolution and subsecond temporal resolution at high recovery rates. These performance metrics, which are 100-1000× superior to existing MD approaches, are enabled by a 100× reduction of the microfluidic channel cross-section, a corresponding drastic 100× reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with high spatiotemporal resolution for clinical, biomedical, and pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Weihua Shi
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Hrishikesh Iyer
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Rashid Bashir
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Yurii Vlasov
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| |
Collapse
|
3
|
Zohouri D, Lienard-Mayor T, Obeid S, Taverna M, Mai TD. A review on hyphenation of droplet microfluidics to separation techniques: From instrumental conception to analytical applications for limited sample volumes. Anal Chim Acta 2024; 1291:342090. [PMID: 38280779 DOI: 10.1016/j.aca.2023.342090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/29/2024]
Abstract
In this study, we review various strategies to couple sample processing in microfluidic droplets with different separation techniques, including liquid chromatography, mass spectrometry, and capillary electrophoresis. Separation techniques interfaced with droplet microfluidics represent an emerging trend in analytical chemistry, in which micro to femtoliter droplets serve as microreactors, a bridge between analytical modules, as well as carriers of target analytes between sample treatment and separation/detection steps. This allows to overcome the hurdles encountered in separation science, notably the low degree of module integration, working volume incompatibility, and cross contamination between different operational stages. For this droplet-separation interfacing purpose, this review covers different instrumental designs from all works on this topic up to May 2023, together with our viewpoints on respective advantages and considerations. Demonstration and performance of droplet-interfaced separation strategies for limited sample volumes are also discussed.
Collapse
Affiliation(s)
- Delaram Zohouri
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Théo Lienard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Sameh Obeid
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
4
|
Liu J, Zhang B, Wang L, Peng J, Wu K, Liu T. The development of droplet-based microfluidic virus detection technology for human infectious diseases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:971-978. [PMID: 38299435 DOI: 10.1039/d3ay01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Li Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Park I, Kim S, Brenden CK, Shi W, Iyer H, Bashir R, Vlasov Y. Highly localized chemical sampling at sub-second temporal resolution enabled with a silicon nanodialysis platform at exceedingly slow flows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556607. [PMID: 37745310 PMCID: PMC10515758 DOI: 10.1101/2023.09.08.556607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and in pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100μm spatial resolution and sub-second temporal resolution at high recovery rates. These performance metrics, which are 100X-1000X superior to existing MD approaches, are enabled by a 100X reduction of the microfluidic channel cross-section, a corresponding drastic 100X reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with unprecedented spatio-temporal resolution for clinical, biomedical, and pharmaceutical applications.
Collapse
|
6
|
Murray BE, Penabad LI, Kennedy RT. Advances in coupling droplet microfluidics to mass spectrometry. Curr Opin Biotechnol 2023; 82:102962. [PMID: 37336080 DOI: 10.1016/j.copbio.2023.102962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Droplet microfluidics enables development of workflows with low sample consumption and high throughput. Fluorescence-based assays are most used with droplet microfluidics; however, the requirement of a fluorescent reporter restricts applicability of this approach. The coupling of droplets to mass spectrometry (MS) has enabled selective assays on complex mixtures to broaden the analyte scope. Droplet microfluidics has been interfaced to MS via electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The works reviewed herein outline the development of this nascent field as well as initial exploration of its application in biotechnology and bioanalysis, including synthetic biology, reaction development, and in vivo sensing.
Collapse
Affiliation(s)
- Bridget E Murray
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | - Laura I Penabad
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
7
|
Chen X, Shu W, Zhao L, Wan J. Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis. VIEW 2022. [DOI: 10.1002/viw.20220038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaonan Chen
- School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| |
Collapse
|
8
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
9
|
Chantipmanee N, Xu Y. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels. Anal Chem 2022; 94:15686-15694. [DOI: 10.1021/acs.analchem.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Hiroyuki Imanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| |
Collapse
|
11
|
D'Amico CI, Polasky DA, Steyer DJ, Ruotolo BT, Kennedy RT. Ion Mobility-Mass Spectrometry Coupled to Droplet Microfluidics for Rapid Protein Structure Analysis and Drug Discovery. Anal Chem 2022; 94:13084-13091. [PMID: 36098981 DOI: 10.1021/acs.analchem.2c02307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry coupled to ion mobility (IM-MS) has become an important tool for the investigation of protein structure and dynamics upon ligand binding. Additionally, collisional activation or collision induced unfolding (CIU) can further probe conformational changes induced by ligand binding; however, larger scale screens have not been implemented due to limitations associated with throughput and sample introduction. In this work we explore the high-throughput capabilities of CIU fingerprinting. Fingerprint collection times were reduced 10-fold over traditional data collections through the use of improved smoothing and interpolation algorithms. Fast-CIU was then coupled to a droplet sample introduction approach using 40 nL droplet sample volumes and 2 s dwell times at each collision voltage. This workflow, which increased throughput by ∼16-fold over conventional nanospray CIU methods, was applied to a 96-compound screen against Sirtuin-5, a protein target of clinical interest. Over 20 novel Sirtuin-5 binders were identified, and it was found that Sirtuin-5 inhibitors will stabilize specific Sirtuin-5 gas-phase conformations. This work demonstrates that droplet-CIU can be implemented as a high-throughput biophysical characterization approach. Future work will focus on improving the throughput of this workflow and on automating data acquisition and analysis.
Collapse
Affiliation(s)
- Cara I D'Amico
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A Polasky
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel J Steyer
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|