1
|
Fu S, Li J, Chen J, Zhang L, Liu J, Liu H, Su X. Bacteriophage λ exonuclease and a 5'-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids. Nat Biotechnol 2024:10.1038/s41587-024-02388-9. [PMID: 39294394 DOI: 10.1038/s41587-024-02388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Sequence-specific recognition of double-stranded nucleic acids is essential for molecular diagnostics and in situ imaging. Clustered regularly interspaced short palindromic repeats and Cas systems rely on protospacer-adjacent motif (PAM)-dependent double-stranded DNA (dsDNA) recognition, limiting the range of targetable sequences and leading to undesired off-target effects. Using single-molecule fluorescence resonance energy transfer analysis, we discover the enzymatic activity of bacteriophage λ exonuclease (λExo). We show binding of 5'-phosphorylated single-stranded DNA (pDNA) to complementary regions on dsDNA and DNA-RNA duplexes, without the need for a PAM-like motif. Upon binding, the λExo-pDNA system catalytically digests the pDNA into nucleotides in the presence of Mg2+. This process is sensitive to mismatches within a wide range of the pDNA-binding region, resulting in exceptional sequence specificity and reduced off-target effects in various applications. The absence of a requirement for a specific motif such as a PAM sequence greatly broadens the range of targets. We demonstrate that the λExo-pDNA system is a versatile tool for molecular diagnostics, DNA computing and gene imaging applications.
Collapse
Affiliation(s)
- Shengnan Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Linghao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Ren Y, Liu K, Yang H, Zhang Y, Deng S, Cao J, Xia X, Deng R. Multiplexing Imaging of Closely Located Single-Nucleotide Mutations in Single Cells via Encoded in situ PCR. ACS Sens 2024; 9:3549-3556. [PMID: 38982583 DOI: 10.1021/acssensors.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mutation accumulation in RNAs results in closely located single-nucleotide mutations (SNMs), which is highly associated with the drug resistance of pathogens. Imaging of SNMs in single cells has significance for understanding the heterogeneity of RNAs that are related to drug resistance, but the direct "see" closely located SNMs remains challenging. Herein, we designed an encoded ligation-mediated in situ polymerase chain reaction method (termed enPCR), which enabled the visualization of multiple closely located SNMs in bacterial RNAs. Unlike conventional ligation-based probes that can only discriminate a single SNM, this method can simultaneously image different SNMs at closely located sites with single-cell resolution using modular anchoring probes and encoded PCR primers. We tested the capacity of the method to detect closely located SNMs related to quinolone resistance in the gyrA gene of Salmonella enterica (S. enterica), and found that the simultaneous detection of the closely located SNMs can more precisely indicate the resistance of the S. enterica to quinolone compared to the detection of one SNM. The multiplexing imaging assay for SNMs can serve to reveal the relationship between complex cellular genotypes and phenotypes.
Collapse
Affiliation(s)
- Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kerui Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
4
|
Liu X, Yang H, Liu J, Liu K, Jin L, Zhang Y, Khan MR, Zhong K, Cao J, He Q, Xia X, Deng R. In Situ Cas12a-Based Allele-Specific PCR for Imaging Single-Nucleotide Variations in Foodborne Pathogenic Bacteria. Anal Chem 2024; 96:2032-2040. [PMID: 38277772 DOI: 10.1021/acs.analchem.3c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
In situ profiling of single-nucleotide variations (SNVs) can elucidate drug-resistant genotypes with single-cell resolution. The capacity to directly "see" genetic information is crucial for investigating the relationship between mutated genes and phenotypes. Fluorescence in situ hybridization serves as a canonical tool for genetic imaging; however, it cannot detect subtle sequence alteration including SNVs. Herein, we develop an in situ Cas12a-based amplification refractory mutation system-PCR (ARMS-PCR) method that allows the visualization of SNVs related to quinolone resistance inside cells. The capacity of discriminating SNVs is enhanced by incorporating optimized mismatched bases in the allele-specific primers, thus allowing to specifically amplify quinolone-resistant related genes. After in situ ARMS-PCR, we employed a modified Cas12a/CRISPR RNA to tag the amplicon, thereby enabling specific binding of fluorophore-labeled DNA probes. The method allows to precisely quantify quinolone-resistant Salmonella enterica in the bacterial mixture. Utilizing this method, we investigated the survival competition capacity of quinolone-resistant and quinolone-sensitive bacteria toward antimicrobial peptides and indicated the enrichment of quinolone-resistant bacteria under colistin sulfate stress. The in situ Cas12a-based ARMS-PCR method holds the potential for profiling cellular phenotypes and gene regulation with single-nucleotide resolution at the single-cell level.
Collapse
Affiliation(s)
- Xinmiao Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Liu
- Chengdu Customs Technology Center, Chengdu 610041, China
| | - Kerui Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Lulu Jin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kai Zhong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Li J, Zhang Y, Wang X, Zhang S, Tan Q, Hu B, Xu Q, Li H. Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing. Anal Chem 2023; 95:12032-12038. [PMID: 37542454 DOI: 10.1021/acs.analchem.3c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by "naked eye" and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yansong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Shenlong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qingqing Tan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Bingtao Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
6
|
Li Y, Huang D, Pei Y, Wu Y, Xu R, Quan F, Gao H, Zhang J, Hou H, Zhang K, Li J. CasSABER for Programmable In Situ Visualization of Low and Nonrepetitive Gene Loci. Anal Chem 2023; 95:2992-3001. [PMID: 36703533 DOI: 10.1021/acs.analchem.2c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-specific imaging of target genes using CRISPR probes is essential for understanding the molecular mechanisms of gene function and engineering tools to modulate its downstream pathways. Herein, we develop CRISPR/Cas9-mediated signal amplification by exchange reaction (CasSABER) for programmable in situ imaging of low and nonrepetitive regions of the target gene in the cell nucleus. The presynthesized primer-exchange reaction (PER) probe is able to hybridize multiple fluorophore-bearing imager strands to specifically light up dCas9/sgRNA target-bound gene loci, enabling in situ imaging of fixed cellular gene loci with high specificity and signal-to-noise ratio. In combination with a multiround branching strategy, we successfully detected nonrepetitive gene regions using a single sgRNA. As an intensity-codable and orthogonal probe system, CasSABER enables the adjustable amplification of local signals in fixed cells, resulting in the simultaneous visualization of multicopy and single-copy gene loci with similar fluorescence intensity. Owing to avoiding the complexity of controlling in situ mutistep enzymatic reactions, CasSABER shows good reliability, sensitivity, and ease of implementation, providing a rapid and cost-effective molecular toolkit for studying multigene interaction in fundamental research and gene diagnosis.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Junli Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou450001, China
- Beijing Institute of Life Science and Technology, Beijing100083, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
7
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|