1
|
Xiang D, Yan X, Liu J, Zhou Y, Cui A, Wang Q, He X, Ma M, Huang J, Liu J, Yang X, Wang K. Magnetofluidic-Assisted Portable Automated Microfluidic Devices for Protein Detection. Anal Chem 2025; 97:1933-1940. [PMID: 39815389 DOI: 10.1021/acs.analchem.4c06384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone. In the device, the mixing of solutions and magnetic beads in the static chamber was enhanced by steel bead agitation, which improved the reaction efficiency. We demonstrate the performance of the device using myoglobin detection as an example. During the detection process, the plasma was separated from the whole blood sample using a homemade mini-centrifuge, and subsequently, the plasma, magnetic beads, and reagents were added to a magnetofluidic chip with multiple chambers. After the chip was loaded, the device was initiated with a smartphone App via Bluetooth. Then, the magnetic beads were shuttled through different chambers of the chip and multiple steps were completed automatically: first, the targets were separated and enriched using antibody-modified magnetic beads, followed by washing, binding with aptamer-functionalized G-quadruplex, signal amplifying (optional), and chromogenic reaction. Finally, the images of colored solutions were captured and processed by a smartphone to obtain the concentrations of myoglobin. The detection limits depended on the mode of signal conversion, which were 0.1 or 2.7 nM (with or without signal amplifying). With its simple operation, compact design, low cost, and ease of scalability, this automated detection device holds potential applications in human health, food safety, environmental monitoring, etc.
Collapse
Affiliation(s)
- Dongliu Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xueting Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jia Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Aiping Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingze Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Li C, Liu J, Almanza A, Li X, Fu G. Integration of Immunosyringe Sensors with Bar-Chart Chips for Prick-and-Read Testing of Prostate Specific Antigen. Anal Chem 2024; 96:20267-20276. [PMID: 39654363 DOI: 10.1021/acs.analchem.4c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Pressure-based signal transduction is of promise in developing microfluidic immunoassays such as volumetric bar-chart chips (V-chips), but new working principles are required to further simplify the methods in point-of-care testing (POCT). Herein, we developed immunosyringe sensors and integrated them with bar-chart chips for simple prick-and-read testing of prostate specific antigen (PSA) as a model target. Disposable syringes served as the host for the construction of the sandwich-type immuno-recognition system. Platinum nanoparticles (Pt NPs) as the peroxidase-mimicking detection probe catalyzed the decomposition of H2O2 to produce O2 in the syringe cylinders, enabling the pressure-driven automatic injection of liquids from the syringes. The immuno-recognition event in the syringes was thereby converted into the quantitative autoinjection behavior of the syringes, namely, immunosyringe sensors. By simply pricking the sensors to bar-chart chips, we visually and quantitatively read the immunoassay signals as the bar-chart injection distance of liquids from the syringes in channels of the chips. The immunoassay showed a limit of detection (LOD) of 0.41 ng/mL in PSA detection with satisfactory accuracy in testing clinical serum samples. Owing to the integration with the immunosyringe sensors, this method, in comparison with conventional V-chips, works in a simpler prick-and-read manner without complex chip configurations and specialized chip operations (e.g., on-chip loading of microvolume reagents and sealing treatments). Therefore, the immunoassay shows great potential in POCT applications.
Collapse
Affiliation(s)
- Cuili Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Jie Liu
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ariana Almanza
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - XiuJun Li
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guanglei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
3
|
Qian C, Li P, Wang J, Hong X, Zhao X, Wu L, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Centrifugo-Pneumatic Reciprocating Flowing Coupled with a Spatial Confinement Strategy for an Ultrafast Multiplexed Immunoassay. Anal Chem 2024; 96:7145-7154. [PMID: 38656793 DOI: 10.1021/acs.analchem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Wang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liqiang Wu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Dai H, Zhang J, Wu Y, Zhao J, Liu C, Cheng Y. Tyramine-Invertase Bioconjugate-Amplified Personal Glucose Meter Signaling for Ultrasensitive Immunoassay. Anal Chem 2024; 96:1789-1794. [PMID: 38230634 DOI: 10.1021/acs.analchem.3c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Highly sensitive and facile detection of low levels of protein markers is of great significance for the early diagnosis and efficacy monitoring of diseases. Herein, aided by an efficient tyramine-signal amplification (TSA) mechanism, we wish to report a simple but ultrasensitive immunoassay with signal readout on a portable personal glucose meter (PGM). In this study, the bioconjugates of tyramine and invertase (Tyr-inv), which act as the critical bridge to convert and amplify the protein concentration information into glucose, are prepared following a click chemistry reaction. Then, in the presence of a target protein, the sandwich immunoreaction between the immobilized capture antibody, the target protein, and the horseradish peroxidase (HRP)-conjugated detection antibody is specifically performed in a 96-well microplate. Subsequently, the specifically loaded HRP-conjugated detection antibodies will catalyze the amplified deposition of a large number of Tyr-inv molecules onto adjacent proteins through highly efficient TSA. Then, the deposited invertase, whose dosage can faithfully reflect the original concentration of the target protein, can efficiently convert sucrose to glucose. The amount of finally produced glucose is simply quantified by the PGM, realizing the highly sensitive detection of trace protein markers such as the carcinoembryonic antigen and alpha fetoprotein antigen at the fg/mL level. This method is simple, cost-effective, and ultrasensitive without the requirement of sophisticated instruments or specialized laboratory equipment, which may provide a universal and promising technology for highly sensitive immunoassay for in vitro diagnosis of diseases.
Collapse
Affiliation(s)
- Hui Dai
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; State Key Laboratory of New Pharmaceutical Preparations and Excipients; College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; State Key Laboratory of New Pharmaceutical Preparations and Excipients; College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yating Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; State Key Laboratory of New Pharmaceutical Preparations and Excipients; College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Jingyu Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; State Key Laboratory of New Pharmaceutical Preparations and Excipients; College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; State Key Laboratory of New Pharmaceutical Preparations and Excipients; College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
5
|
Lin X, Fang Y, Chen Q, Guo Z, Chen X, Chen X. Magnetically actuated microfluidic chip combined with a G-quadruplex DNAzyme-based fluorescent/colorimetric sensor for the dual-mode detection of ochratoxin A in wheat. Talanta 2024; 267:125273. [PMID: 37804790 DOI: 10.1016/j.talanta.2023.125273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this work, a portable fluorescent/colorimetric sensor based on G-quadruplex DNAzyme was constructed to achieve rapid and dual-mode detection of ochratoxin A (OTA) in wheat. OTA aptamers coupled with magnetic beads (MBs) can self-assemble with two segments of DNA and hemin to form a G-quadruplex DNAzyme structure that can catalyze the oxidation of Amplex Red (ADHP) with H2O2, making the solution red and producing strong fluorescence in solution. However, in the presence of OTA, the structure of the G-quadruplex DNAzyme was damaged, resulting in reduced catalytic activity. According to the principle of detection, a magnet-controlled chip integrating the reaction, washing, and detection was designed in this study. Shuttling the MB-DNAzyme probes onto a magnetically controlled chip considerably reduced the background signal and improved the detection efficiency and sensitivity. In addition, a portable fluorescence and colorimetric detection platform was built for on-site OTA detection.
Collapse
Affiliation(s)
- Xueqi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Yuwen Fang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Huang D, Zhao Y, Fang M, Shen P, Xu H, He Y, Chen S, Si Z, Xu Z. Magnetofluid-integrated biosensors based on DNase-dead Cas12a for visual point-of-care testing of HIV-1 by an up and down chip. LAB ON A CHIP 2023; 23:4265-4275. [PMID: 37712284 DOI: 10.1039/d3lc00558e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The CRISPR Cas system, as a novel nucleic acid detection tool, is often hindered by cumbersome experimental procedures, complicated reagent transfer processes, and associated aerosol pollution risks. In this study, an integrated nucleic acid detection platform named "up and down chip" was developed, which combined RT-RAA technology for nucleic acid amplification, DNase-dead Cas12a-modified magnetic beads for specific recognition of target nucleic acid, and HRP-TMB chromogenic reaction for signal output in different chambers of a single microfluidic chip. The magnetic beads were migrated in an up-and-down manner between different chambers through magnetic driving, achieving a "sample-in, result-out" detection mode. By introducing a homemade heating box for temperature control during the reaction and using the naked eye or a smartphone APP for color-based signal reading, no professional or precise instruments were required in this platform. Using this platform, highly sensitive detection of the HIV-1 genome as low as 250 copies (CPs) per mL was achieved within 100 min while maintaining good detection performance against common variants as well as excellent specificity and anti-interference ability. In addition, compared with qRT-PCR, it also exhibited good accuracy for 56 spiked plasma samples, indicating its promising potential for clinical application.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yekai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hu Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yichen He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenjun Si
- Hangzhou FasTech Biotechnology Company Limited, Hangzhou 310005, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Liu Z, Liang J, Hu H, Wu M, Ma J, Ma Z, Ji J, Chen H, Li X, Wang Z, Luo Y. Development of an Effective Neutralizing Antibody Assay for SARS-CoV-2 Diagnosis. Int J Nanomedicine 2023; 18:3125-3139. [PMID: 37333734 PMCID: PMC10275375 DOI: 10.2147/ijn.s408921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Neutralizing antibodies (NAbs) are essential for preventing reinfection with SARS-CoV-2 and the recurrence of COVID-19; nonetheless, the formation of NAbs following vaccination and infection remains enigmatic due to the lack of a practical and effective NAb assay in routine laboratory settings. In this study, we developed a convenient lateral flow assay for the rapid and precise measurement of serum NAb levels within 20 minutes. Methods Receptor-binding domain-fragment crystallizable (RBD-Fc) and angiotensin-converting enzyme 2-histidine tag (ACE2-His) were expressed by the eukaryotic expression systems of Spodoptera frugiperda clone 9 and human embryonic kidney 293T, respectively. Then, colloidal gold was synthesized and conjugated with ACE2. After optimizing various operating parameters, an NAb lateral flow assay was constructed. Subsequently, its detection limit, specificity, and stability were systematically evaluated, and clinical samples were analyzed to validate its clinical feasibility. Results RBD-Fc and ACE2-His were obtained with 94.01% and 90.05% purity, respectively. The synthesized colloidal gold had a uniform distribution with an average diameter of 24.15 ± 2.56 nm. With a detection limit of 2 μg/mL, the proposed assay demonstrated a sensitivity of 97.80% and a specificity of 100% in 684 uninfected clinical samples. By evaluating 356 specimens from infected individuals, we observed that the overall concordance rate between the proposed assay and conventional enzyme-linked immunosorbent assay was 95.22%, and we noticed that 16.57% (59/356) of individuals still did not produce NAbs after infection (both by ELISA and the proposed assay). All the above tests by this assay can obtain results within 20 minutes by the naked eye without any additional instruments or equipment. Conclusion The proposed assay can expediently and reliably detect anti-SARS-CoV-2 NAbs after infection, and the results provide valuable data to facilitate effective prevention and control of SARS-CoV-2. Clinical trial registration Serum and blood samples were used under approval from the Biomedical Research Ethics Subcommittee of Henan University, and the clinical trial registration number was HUSOM-2022-052. We confirm that this study complies with the Declaration of Helsinki.
Collapse
Affiliation(s)
- Zhigang Liu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jiahui Liang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Mengli Wu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Ziwei Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jianing Ji
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hengyi Chen
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Xiaoquan Li
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People’s Republic of China
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People’s Republic of China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, 650500, People’s Republic of China
| |
Collapse
|
8
|
Chen C, Liang J, Hu H, Li X, Wang L, Wang Z. Research progress in methods for detecting neutralizing antibodies against SARS-CoV-2. Anal Biochem 2023:115199. [PMID: 37257735 DOI: 10.1016/j.ab.2023.115199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
The emergence of SARS-CoV-2 has seriously affected the lives of people worldwide. Clarifying the attenuation rule of SARS-CoV-2 neutralizing antibody (NAb) in vivo is the key to prevent reinfection and recurrence of virus. Currently, the commonly used methods for detecting NAb include virus neutralization tests, pseudovirus neutralization assays, lateral flow immunochromatography and enzyme-linked immunosorbent assays. The detection of NAb not only can be used to evaluate the level of immunity after vaccination or infection but also can provide important theoretical support for virus reinfection, recurrence and vaccine iteration. In this research, the related technologies of SARS-CoV-2 NAb detection were reviewed, aiming to provide better research ideas for SARS-CoV-2 epidemic prevention and control.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Jiahui Liang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Hangzhan Hu
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China; Heze Municipal Hospital, Heze, 274000, China
| | - Xiaoquan Li
- Heze Municipal Hospital, Heze, 274000, China
| | - Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.
| | - Zhizeng Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China; Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|