1
|
Cheng H, Miller D, Southwell N, Porcari P, Fischer JL, Taylor I, Michael Salbaum J, Kappen C, Hu F, Yang C, Keshari KR, Gross SS, D'Aurelio M, Chen Q. Untargeted Pixel-by-Pixel Imaging of Metabolite Ratio Pairs as a Novel Tool for Biomedical Discovery in Mass Spectrometry Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575105. [PMID: 38370710 PMCID: PMC10871215 DOI: 10.1101/2024.01.10.575105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.
Collapse
|
2
|
Shah M, Guo L, Xu X, Deng L, Lu K, Dong J, Zhao C, Xu J. eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity. J Proteome Res 2024; 23:3088-3095. [PMID: 38690713 DOI: 10.1021/acs.jproteome.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Spatial segmentation is an essential processing method for image analysis aiming to identify the characteristic suborgans or microregions from mass spectrometry imaging (MSI) data, which is critical for understanding the spatial heterogeneity of biological information and function and the underlying molecular signatures. Due to the intrinsic characteristics of MSI data including spectral nonlinearity, high-dimensionality, and large data size, the common segmentation methods lack the capability for capturing the accurate microregions associated with biological functions. Here we proposed an ensemble learning-based spatial segmentation strategy, named eLIMS, that combines a randomized unified manifold approximation and projection (r-UMAP) dimensionality reduction module for extracting significant features and an ensemble pixel clustering module for aggregating the clustering maps from r-UMAP. Three MSI datasets are used to evaluate the performance of eLIMS, including mouse fetus, human adenocarcinoma, and mouse brain. Experimental results demonstrate that the proposed method has potential in partitioning the heterogeneous tissues into several subregions associated with anatomical structure, i.e., the suborgans of the brain region in mouse fetus data are identified as dorsal pallium, midbrain, and brainstem. Furthermore, it effectively discovers critical microregions related to physiological and pathological variations offering new insight into metabolic heterogeneity.
Collapse
Affiliation(s)
- Mudassir Shah
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Lei Guo
- Interdisciplinary Institute of Medical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiangnan Xu
- School of Business and Economics, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, Nanchang 330013, China
| | - Keyi Lu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jingjing Xu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Xu G, Gan S, Guo B, Yang L. Application of clustering strategy for automatic segmentation of tissue regions in mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9717. [PMID: 38389435 DOI: 10.1002/rcm.9717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
RATIONALE Mass spectrometry imaging (MSI) has been widely used in biomedical research fields. Each pixel in MSI consists of a mass spectrum that reflects the molecule feature of the tissue spot. Because MSI contains high-dimensional datasets, it is highly desired to develop computational methods for data mining and constructing tissue segmentation maps. METHODS To visualize different tissue regions based on mass spectrum features and improve the efficiency in processing enormous data, we proposed a computational strategy that consists of four procedures including preprocessing, data reduction, clustering, and quantitative validation. RESULTS In this study, we examined the combination of t-distributed stochastic neighbor embedding (t-SNE) and hierarchical clustering (HC) for MSI data analysis. Using publicly available MSI datasets, one dataset of mouse urinary bladder, and one dataset of human colorectal cancer, we demonstrated that the generated tissue segmentation maps from this combination were superior to other data reduction and clustering algorithms. Using the staining image as a reference, we assessed the performance of clustering algorithms with external and internal clustering validation measures, including purity, adjusted Rand index (ARI), Davies-Bouldin index (DBI), and spatial aggregation index (SAI). The result indicated that SAI delivered excellent performance for automatic segmentation of tissue regions in MSI. CONCLUSIONS We used a clustering algorithm to construct tissue automatic segmentation in MSI datasets. The performance was evaluated by comparing it with the stained image and calculating clustering validation indexes. The results indicated that SAI is important for automatic tissue segmentation in MSI, different from traditional clustering validation measures. Compared to the reports that used internal clustering validation measures such as DBI, our method offers more effective evaluation of clustering results for MSI segmentation. We envision that the proposed automatic image segmentation strategy can facilitate deep learning in molecular feature extraction and biomarker discovery for the biomedical applications of MSI.
Collapse
Affiliation(s)
- Guang Xu
- College of Computer, Hubei University of Education, Wuhan, China
| | - Shengfeng Gan
- College of Computer, Hubei University of Education, Wuhan, China
| | - Bo Guo
- College of Computer, Hubei University of Education, Wuhan, China
| | - Li Yang
- College of Computer, Hubei University of Education, Wuhan, China
| |
Collapse
|
4
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
5
|
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal 2024; 14:1-15. [PMID: 38352954 PMCID: PMC10859535 DOI: 10.1016/j.jpha.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ruidi Jiao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
6
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|