1
|
Zeng Q, Yuwen Z, Zhang L, Li Y, Liu H, Zhang K. Molecular Engineering of a Doubly Quenched Fluorescent Probe Enables Ultrasensitive Detection of Biothiols in Highly Diluted Plasma and High-Fidelity Imaging of Dihydroartemisinin-Induced Ferroptosis. Anal Chem 2024. [PMID: 39087711 DOI: 10.1021/acs.analchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The occurrence and development of diseases are accompanied by abnormal activity or concentration of biomarkers in cells, tissues, and blood. However, the insufficient sensitivity and accuracy of the available fluorescence probes hinder the precise monitoring of associated indexes in biological systems, which is generally due to the high probe intrinsic fluorescence and false-negative signal caused by the reactive oxygen species (ROS)-induced probe decomposition. To resolve these problems, we have engineered a ROS-stable, meso-carboxylate boron dipyrromethene (BODIPY)-based fluorescent probe, which displays quite a low background fluorescence due to the doubly quenched intrinsic fluorescence by a combined strategy of the photoinduced electron transfer (PET) effect and "ester-to-carboxylate" conversion. The probe achieved a high S/N ratio with ultrasensitivity and good selectivity toward biothiols, endowing its fast detection capability toward the biothiol level in 200×-diluted plasma samples. Using this probe, we achieved remarkable distinguishing of liver injury plasma from normal plasma even at 80× dilution. Moreover, owing to its good stability toward ROS, the probe was successfully employed for high-fidelity imaging of the negative fluctuation of the biothiol level in nonsmall-cell lung cancer (NSCLC) during dihydroartemisinin-induced ferroptosis. This delicate design of suppressing intrinsic fluorescence reveals insights into enhancing the sensitivity and accuracy of fluorescent probes toward the detection and imaging of biomarkers in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lemeng Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Yuning Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
2
|
Xie C, Peng Y, Zhang Z, Luo K, Yang Q, Tan L, Zhou L. Tumor Microenvironment Activatable Nanoprodrug System for In Situ Fluorescence Imaging and Therapy of Liver Cancer. Anal Chem 2024; 96:5006-5013. [PMID: 38484040 DOI: 10.1021/acs.analchem.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of new imaging and treatment nanoprodrug systems is highly demanded for diagnosis and therapy of liver cancer, a severe disease characterized by a high recurrence rate. Currently, available small molecule drugs are not possible for cancer diagnosis because of the fast diffusion of imaging agents and low efficacy in treatment due to poor water solubility and significant toxic side effects. In this study, we report the development of a tumor microenvironment activatable nanoprodrug system for the diagnosis and treatment of liver cancer. This nanoprodrug system can accumulate in the tumor site and be selectively activated by an excess of hydrogen peroxide (H2O2) in the tumor microenvironment, releasing near-infrared solid-state organic fluorescent probe (HPQCY-1) and phenylboronic acid-modified camptothecin (CPT) prodrug. Both HPQCY-1 and CPT prodrugs can be further activated in tumor sites for achieving more precise in situ near-infrared (NIR) fluorescence imaging and treatment while reducing the toxic effects of drugs on normal tissues. Additionally, the incorporation of hydrophilic multivalent chitosan as a carrier effectively improved the water solubility of the system. This research thus provides a practical new approach for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Mo-lecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Gao Z, Yang H, Ran L, Zhang D, Ren Y, Wang F, Ren J, Wang E. Water-Soluble Dual-Channel Fluorescent Probe for Sensitive Detection of Biothiols In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2023; 6:5828-5835. [PMID: 38055907 DOI: 10.1021/acsabm.3c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Benefiting from high spatiotemporal resolution, deep tissue penetration, and excellent sensitivity, fluorescence imaging technology has been widely applied in cancer diagnosis and treatment. In recent years, a large number of fluorescent probes for monitoring the levels of endogenous biothiols have been reported, which have significant implications for cancer diagnosis and treatment. However, most probes still suffer from poor biological compatibility and easy attachment by the environment. This work presents the development of a water-soluble dual-channel fluorescent probe, named MAL-NBD, for sensitively detecting biothiols. Nonfluorescent MAL-NBD is transformed into fluorescent groups MAL and NBD-SR/NR through nucleophilic substitution by biologically active thiols, producing dual-channel fluorescence signals for precise detection of biologically active thiols. Taking advantage of the excellent biocompatibility and low biotoxicity, MAL-NBD is successfully used for imaging HeLa cancer cells and zebrafish larvae, promoting its potential application for the precise detection of biological thiols involved in physiological and pathological processes.
Collapse
Affiliation(s)
- Zhenbo Gao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Hang Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Lingzi Ran
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Dan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Yong Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Erfei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
4
|
Yan J, Liu H, Wu Y, Niu B, Deng X, Zhang L, Dang Q, Wang Y, Lu X, Zhang B, Sun W. Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging. Biomaterials 2023; 301:122281. [PMID: 37643487 DOI: 10.1016/j.biomaterials.2023.122281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Flourished in the past two decades, fluorescent probe technology provides researchers with accurate and efficient tools for in situ imaging of biomarkers in living cells and tissues and may play a significant role in clinical diagnosis and treatment such as biomarker detection, fluorescence imaging-guided surgery, and photothermal/photodynamic therapy. In situ imaging of biomarkers depends on the spatial resolution of molecular probes. Nevertheless, the majority of currently available molecular fluorescent probes suffer from the drawback of diffusing from the target region. This leads to a rapid attenuation of the fluorescent signal over time and a reduction in spatial resolution. Consequently, the diffused fluorescent signal cannot accurately reflect the in situ information of the target. Self-immobilizing and self-precipitating molecular fluorescent probes can be used to overcome this problem. These probes ensure that the fluorescent signal remains at the location where the signal is generated for a long time. In this review, we introduce the development history of the two types of probes and classify them in detail according to different design strategies. In addition, we compare their advantages and disadvantages, summarize some representative studies conducted in recent years, and propose prospects for this field.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Ben Niu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yubo Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiao Lu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Liu C, Zhang Y, Sun W, Zhu H, Su M, Wang X, Rong X, Wang K, Yu M, Sheng W, Zhu B. A novel GSH-activable theranostic probe containing kinase inhibitor for synergistic treatment and selective imaging of tumor cells. Talanta 2023; 260:124567. [PMID: 37121140 DOI: 10.1016/j.talanta.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Theranostic probe is becoming a powerful tool for diagnosis and treatment of cancer. Although some theranostic probes have been successfully developed, there is still a great room for improvement in sensitive diagnosis and efficient treatment. Herein, we developed a novel GSH-activable theranostic probe NC-G, which uses 1,8-naphthalimide-4-sulfonamide as a fluorescence imaging group and crizotinib as a highly toxic kinase inhibitor to tumor cells. The probe not only has high sensitivity (DL = 74 nM) and specificity, but also can detect GSH sensitively in cells and zebrafish. In addition, probe NC-G can not only show more obvious fluorescence in tumor cells to achieve sensitive diagnosis of tumor cells, but also release the inhibitor crizotinib to achieve high toxicity to tumor cells. It is worth noting that the consumption of GSH can cause oxidative stress response of cells and the release of SO2 can induce cell apoptosis during the recognition process of the probe and GSH. Thus, the synergistic effect of crizotinib, GSH depletion, and SO2 release provides a highly effective therapeutic feature for tumor cells. Therefore, probe NC-G can serve as an excellent theranostic probe for sensitive imaging and highly effective treatment of tumor cells.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
6
|
Liang Z, Sun Y, Zeng H, Qin H, Yang R, Qu L, Zhang K, Li Z. Broad-Specificity Screening of Pyrethroids Enabled by the Catalytic Function of Human Serum Albumin on Coumarin Hydrolysis. Anal Chem 2023; 95:5678-5686. [PMID: 36952638 DOI: 10.1021/acs.analchem.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sensing systems based on cholinesterase and carboxylesterase coupled with different transduction technologies have emerged for pesticide screening owing to their simple operation, fast response, and suitability for on-site analysis. However, the broad spectrum and specificity screening of pyrethroids over organophosphates and carbamates remains an unmet challenge for current enzymatic sensors. Human serum albumin (HSA), a multifunctional protein, can promote various chemical transformations and show a high affinity for pyrethroids, which offer a route for specific and broad-spectrum pyrethroid screening. Herein, for the first time, we evaluated the catalytic hydrolysis function of human serum albumin (HSA) on the coumarin lactone bond and revealed that HSA can act as an enzyme to catalyze the hydrolysis of the coumarin lactone bond. Molecular docking and chemical modifications indicate that lysine 199 and tyrosine 411 serve as the catalytic general base and contribute to most of the catalytic activity. Utilizing this enzymatic activity, a broad specific ratiometric fluorescence pyrethroids sensing system was developed. The binding energetics and binding constants of pesticides and HSA show that pyrethroids bind to HSA more easily than organophosphates and carbamates, which is responsible for the specificity of the sensing system. This study provides a general sensor platform and strategy for screening pesticides and reveals the catalytic activity of HSA on the hydrolysis of the coumarin lactone bond, which may open innovative horizons for the chemical sensing and biomedical applications of HSA.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haimei Qin
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Hao Y, Zhang Y, Zhu D, Luo L, Chen L, Tang Z, Zeng R, Xu M, Chen S. Dual-emission fluorescent probe for discriminative sensing of biothiols. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|