1
|
Bilge S, Gürbüz MM, Ozkan SA, Dogan Topal B. Electrochemical sensor for the analysis of 5-hydroxymethylcytosine in the presence of cytosine using pencil graphite electrode. Anal Biochem 2025; 696:115674. [PMID: 39293646 DOI: 10.1016/j.ab.2024.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
In recent years, important efforts have been made to elucidate the mechanisms of epigenetic regulation, and one of the most studied epigenetic modifications was DNA methylation/demethylation. In this study, the voltammetric behaviour of 5-hydroxymethylcytosine was studied in the pH range of 2.00-11.00 using pencil graphite electrodes by differential pulse and square wave voltammetry. The effect of buffer solutions, scan rate, square wave voltammetry parameters, and stripping conditions on the voltammetric responses of 5-hydroxymethylcytosine were performed. The electrochemical oxidation process of 5-hydroxymethylcytosine on the pencil graphite electrode was realized under adsorption control. In human urine, by square wave stripping voltammetry, 5-hydroxymethylcytosine was quantified in a concentration range of 1.00 × 10-5 M-2.00 × 10-4 M. The proposed method was tested in the presence of cytosine in human urine. The recovery value of 5-hydroxymethylcytosine was found to be 99.57 %.
Collapse
Affiliation(s)
- Selva Bilge
- Ankara University, Department of Chemistry, 06100, Beşevler, Ankara, Turkey
| | - Manolya Müjgan Gürbüz
- Ankara University, Graduate School of Health Science, 06110, Dışkapı, Ankara, Turkey; Lokman Hekim University, Faculty of Pharmacy, Department of Analytical Chemistry, 06510, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Burcu Dogan Topal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
2
|
Wei Z, Yu L, Feng Y, Gan Z, Shen Y, Peng S, Xiao Y. Bioinspired Heterocoordination in Adaptable Cobalt Metal-Organic Framework for DNA Epigenetic Modification Detection. Anal Chem 2024; 96:9984-9993. [PMID: 38833588 DOI: 10.1021/acs.analchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.
Collapse
Affiliation(s)
- Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yumin Feng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiwen Gan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongjin Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Avraham S, Schütz L, Käver L, Dankers A, Margalit S, Michaeli Y, Zirkin S, Torchinsky D, Gilat N, Bahr O, Nifker G, Koren-Michowitz M, Weinhold E, Ebenstein Y. Chemo-Enzymatic Fluorescence Labeling Of Genomic DNA For Simultaneous Detection Of Global 5-Methylcytosine And 5-Hydroxymethylcytosine. Chembiochem 2023; 24:e202300400. [PMID: 37518671 DOI: 10.1002/cbic.202300400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
5-Methylcytosine and 5-hydroxymethylcytosine are epigenetic modifications involved in gene regulation and cancer. We present a new, simple, and high-throughput platform for multi-color epigenetic analysis. The novelty of our approach is the ability to multiplex methylation and de-methylation signals in the same assay. We utilize an engineered methyltransferase enzyme that recognizes and labels all unmodified CpG sites with a fluorescent cofactor. In combination with the already established labeling of the de-methylation mark 5-hydroxymethylcytosine via enzymatic glycosylation, we obtained a robust platform for simultaneous epigenetic analysis of these marks. We assessed the global epigenetic levels in multiple samples of colorectal cancer and observed a 3.5-fold reduction in 5hmC levels but no change in DNA methylation levels between sick and healthy individuals. We also measured epigenetic modifications in chronic lymphocytic leukemia and observed a decrease in both modification levels (5-hydroxymethylcytosine: whole blood 30 %; peripheral blood mononuclear cells (PBMCs) 40 %. 5-methylcytosine: whole blood 53 %; PBMCs 48 %). Our findings propose using a simple blood test as a viable method for analysis, simplifying sample handling in diagnostics. Importantly, our results highlight the assay's potential for epigenetic evaluation of clinical samples, benefiting research and patient management.
Collapse
Affiliation(s)
- Sigal Avraham
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Larissa Käver
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Andreas Dankers
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Sapir Margalit
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
| | - Yael Michaeli
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shahar Zirkin
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dmitry Torchinsky
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Noa Gilat
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Omer Bahr
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gil Nifker
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| | | | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly SacklerFaculty of Exact Sciences, Department of Biomedical Engineering, Tel Aviv University Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
- School of Chemistry,Ramat Aviv, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
4
|
Bisht D, Arora A, Sachan M. Role of DNA De-methylation intermediate '5-hydroxymethylcytosine' in ovarian cancer management: A comprehensive review. Biomed Pharmacother 2022; 155:113674. [PMID: 36099791 DOI: 10.1016/j.biopha.2022.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer remains the most eminent silent killer, with high morbidity and mortality among all gynaecological cancers. The advanced-stage patient's diagnosis has a low survival rate caused by its asymptomatic progression and diverse histopathological sub-types, wherefore in poor prognosis and highly recurring malignancy with multidrug resistance towards chemotherapy. Epigenetic biomarkers open promising avenues of intriguing research to combat OC malignancy, furthermore a tool for its early diagnosis. 5-hydroxymethycytosine (5-hmC), alias the sixth base of the genome, is an intermediate formed during the recently established DNA demethylation process and catalysed via ten-eleven translocation (TET) family of enzymes. It plays a significant role in regulating gene expression and has sparked interest in various cancer types. This review summarizes the role of active DNA demethylation process, its enzymes and intermediate 5-hmC in epigenetic landscape of ovarian cancer as a potent biomarker for clinical translation in identification of therapeutic targets, diagnostic and prognostic evaluation.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|