1
|
Deng X, Hu L, Xing H, Liu Y, Yin H. Recent progress in gold-derived nanomaterials for tumor theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8058-8067. [PMID: 39601081 DOI: 10.1039/d4ay01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is widely acknowledged that gold-based materials are of significant interest in the field of biomedicine. Consequently, considerable efforts have been devoted to identifying gold nanoparticles that exhibit effective performance in tumor diagnosis and treatment. However, the underlying reasons for the enhanced efficacy of these gold-based nanomaterials in cancer therapy and diagnosis remain unclear, primarily due to the lack of an in-depth understanding of the mechanisms involved. Therefore, it is essential to summarize the progress in the field to facilitate the rational design of more efficient nanodevices. In this review, we present recent achievements drawn from the latest research to demonstrate the broad applications of gold-based materials. We begin by illustrating the mechanisms of gold-derived nanoparticles during therapeutic and diagnostic processes, including photothermal therapy, photodynamic therapy, sonodynamic therapy, photoacoustic tomography, fluorescence imaging, and X-ray computed tomography. We then summarize the advancements of gold-based nanomaterials in cancer diagnosis and treatment while also analyzing the factors contributing to their enhanced performance. Finally, we highlight key descriptors for evaluating the efficacy and strategies for designing high-performance nanomaterials. This review aims to pave the way for addressing future challenges and outlines directions for the advancement of gold-based biomedicine.
Collapse
Affiliation(s)
- Xi Deng
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Hu
- Department of Oncology, Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
2
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Chen SH, Liu H, Huang B, Zheng J, Zhang ZL, Pang DW, Huang P, Cui R. Biosynthesis of NIR-II Ag 2Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviating-Hypoxia Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310795. [PMID: 38501992 DOI: 10.1002/smll.202310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.
Collapse
Affiliation(s)
- Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| |
Collapse
|
4
|
Zhang J, Guo B, Jiang Y, Hu C, Kim J, Debnath S, Shi X, Zhang C, Kim JS, Wang F. Luciferase-Decorated Gold Nanorods as Dual-Modal Contrast Agents for Tumor-Targeted High-Performance Bioluminescence/Photoacoustic Imaging. Anal Chem 2024; 96:9132-9140. [PMID: 38764163 DOI: 10.1021/acs.analchem.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong Universityy, Xi'an 710004, China
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Bin Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yiyi Jiang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Chong Hu
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | | | - Xiaorui Shi
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Chuanxian Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Fu Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong Universityy, Xi'an 710004, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| |
Collapse
|
5
|
Diao S, Liu Y, Guo Z, Xu Z, Shen J, Zhou W, Xie C, Fan Q. Prolonging Treatment Window of Photodynamic Therapy with Self-Amplified H 2 O 2 -Activated Photodynamic/Chemo Combination Therapeutic Nanomedicines. Adv Healthc Mater 2023; 12:e2301732. [PMID: 37548967 DOI: 10.1002/adhm.202301732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach to cancer therapy. However, the relatively short tumor retention time of photosensitizers (PSs) makes it difficult to catch the optimal treatment time and restricts multiple PDT within a single injection. In this study, a tumor-specific phototheranostic nanomedicine (DPPa NP) is developed for photodynamic/chemo combination therapy with a prolonged PDT treatment window. DPPa NP is prepared via encapsulating a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable PS DPPa with amphiphilic H2 O2 -activatable chlorambucil (CL) prodrug mPEG-TK-CL. The released CL under H2 O2 treatment can not only kill tumor cells but also upregulate reactive oxygen species levels within tumor cells, leading to the almost full release of cargoes. The released DPPa may conjugate with overexpressed BSA-SOH, which results in the recovery of the fluorescence signal and photodynamic effect. More importantly, such conjugation transfers DPPa from a small molecule PS into a macromolecular PS with a long tumor retention time and treatment window of PDT, which enables multiple PDT. This study thus provides an effective strategy to prolong the treatment window of PDT and enables tumor-specific fluorescence imaging-guided combination therapy.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yaxin Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zixin Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinlong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
6
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
7
|
Ye Y, Yu H, Chen B, Zhao Y, Lv B, Xue G, Sun Y, Cao J. Engineering nanoenzymes integrating Iron-based metal organic frameworks with Pt nanoparticles for enhanced Photodynamic-Ferroptosis therapy. J Colloid Interface Sci 2023; 645:882-894. [PMID: 37178565 DOI: 10.1016/j.jcis.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Photodynamic therapy (PDT), as a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species, has been widely used for eliminating cancer cells under specific wavelength light irradiation. However, the low aqueous solubility of PSs and special tumor microenvironments (TME), such as high glutathione (GSH) and tumor hypoxia remain challenges towards PDT for hypoxic tumor treatment. To address these problems, we constructed a novel nanoenzyme for enhanced PDT-ferroptosis therapy by integrating small Pt nanoparticles (Pt NPs) and near-infrared photosensitizer CyI into iron-based metal organic frameworks (MOFs). In addition, hyaluronic acid was adhered to the surface of the nanoenzymes to enhance the targeting ability. In this design, MOFs act not only as a delivery vector for PSs, but also a ferroptosis inducer. Pt NPs stabilized by MOFs were functioned as an oxygen (O2) generator by catalyzing hydrogen peroxide into O2 to relieve tumor hypoxia and increase singlet oxygen generation. In vitro and in vivo results demonstrated that under laser irradiation, this nanoenzyme could effectively relive the tumor hypoxia and decrease the level of GSH, resulting in enhanced PDT-ferroptosis therapy against hypoxic tumor. The proposed nanoenzymes represent an important advance in altering TME for improved clinical PDT-ferroptosis therapy, as well as their potential as effective theranostic agents for hypoxic tumors.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bai Lv
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Guanghe Xue
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
8
|
Li W, Li F, Li T, Zhang W, Li B, Liu K, Lun X, Guo Y. Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression. Front Chem 2023; 11:1167586. [PMID: 37007061 PMCID: PMC10063802 DOI: 10.3389/fchem.2023.1167586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Biomimetic nanocomposites are widely used in the biomedical field because they can effectively solve the problems existing in the current cancer treatment by realizing multi-mode collaborative treatment. In this study, we designed and synthesized a multifunctional therapeutic platform (PB/PM/HRP/Apt) with unique working mechanism and good tumor treatment effect. Prussian blue nanoparticles (PBs) with good photothermal conversion efficiency were used as nuclei and coated with platelet membrane (PM). The ability of platelets (PLTs) to specifically target cancer cells and inflammatory sites can effectively enhance PB accumulation at tumor sites. The surface of the synthesized nanocomposites was modified with horseradish peroxidase (HRP) to enhance the deep penetration of the nanocomposites in cancer cells. In addition, PD-L1 aptamer and 4T1 cell aptamer AS1411 were modified on the nanocomposite to achieve immunotherapy and enhance targeting. The particle size, UV absorption spectrum and Zeta potential of the biomimetic nanocomposite were determined by transmission electron microscope (TEM), Ultraviolet-visible (UV-Vis) spectrophotometer and nano-particle size meter, and the successful preparation was proved. In addition, the biomimetic nanocomposites were proved to have good photothermal properties by infrared thermography. The cytotoxicity test showed that it had a good killing ability of cancer cells. Finally, thermal imaging, tumor volume detection, immune factor detection and Haematoxilin-Eosin (HE) staining of mice showed that the biomimetic nanocomposites had good anti-tumor effect and could trigger immune response in vivo. Therefore, this biomimetic nanoplatform as a promising therapeutic strategy provides new inspiration for the current diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Wenxin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Binglin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kunrui Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoli Lun
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| |
Collapse
|
9
|
Ma D, Chen W, Wang L, Han R, Tang K. O 2 self-sufficient and glutathione-depleted nanoplatform for amplifying phototherapy synergistic thermodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113060. [PMID: 36538856 DOI: 10.1016/j.colsurfb.2022.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/28/2022]
Abstract
Tumor hypoxia and high levels of intracellular glutathione (GSH) significantly limit the efficacy of photodynamic therapy (PDT). In addition, a single PDT treatment strategy is relatively insufficient to eliminate tumor, further limiting its application in biomedicine. Therefore, we demonstrated an omnipotent nanoplatform based on 2,2'-azobis [2-(2 imidazolin-2-yl)propane] dihydrochloride (AIPH) loaded manganese dioxide (MnO2) nanoflower (abbreviated as MnO2-AIPH) with simultaneously self-supplying oxygen (O2), depleting GSH, performing PDT, photothermal (PTT) and thermodynamic therapy (TDT) for boosting antitumor effects. By 808 nm near infrared (NIR) light irradiation, MnO2-AIPH not only reveals highly toxic reactive oxygen species (ROS) generation and excellent photothermal conversion ability for PDT and PTT, but also generates alkyl radicals by decomposing AIPH for TDT simultaneously to eliminate tumor effectively. Once internalized into the tumor, MnO2 will be degraded to Mn2+ which catalyzes endogenous hydrogen peroxide (H2O2) into O2 for enhanced PDT. Moreover, MnO2 can facilitate GSH oxidation to amplify oxidative stress, further enhancing ROS and alkyl radicals mediated cancer cell killing. In brief, this study provides a paradigm of antitumor efficiency amplification by the combination of sustained oxygen supply, potent GSH depletion, and phototherapy synergistic TDT.
Collapse
Affiliation(s)
- Danhua Ma
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo 315010, PR China
| | - Wei Chen
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Liang Wang
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo 315010, PR China
| | - Renlu Han
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|