1
|
Samolis PD, Sander MY. Increasing contrast in water-embedded particles via time-gated mid-infrared photothermal microscopy. OPTICS LETTERS 2024; 49:1457-1460. [PMID: 38489424 DOI: 10.1364/ol.513742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
The transient dynamics of photothermal signals provide interesting insights into material properties and heat diffusion. In a mid-infrared (mid-IR) photothermal microscope, the imaging contrast in a standard amplitude imaging can decrease due to thermal diffusion effects. It is shown that contrast varies for poly-methyl 2-methylpropenoate (PMMA) particles of different sizes when embedded in an absorbing medium of water (H2O) based on levels of heat exchange under the water absorption resonance. Using time-resolved boxcar (BC) detection, analysis of the transient thermal dynamics at the bead-water interface is presented, and the time decay parameters for 500 nm and 100 nm beads are determined. Enhanced (negative) imaging contrast is observed for less heat exchange between the water and bead, as in the case for the 100 nm bead. For the 500 nm bead, boxcar imaging before heat exchange starts occurring, leads to an increase of the imaging contrast up to a factor of 1.6.
Collapse
|
2
|
Park C, Cho M. Dual phase-detected infrared photothermal microscopy. OPTICS EXPRESS 2024; 32:6865-6875. [PMID: 38439382 DOI: 10.1364/oe.510044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024]
Abstract
Infrared photothermal microscopy (IPM) has recently gained considerable attention as a versatile analytical platform capable of providing spatially resolved molecular insights across diverse research fields. This technique has led to numerous breakthroughs in the study of compositional variations in functional materials and cellular dynamics in living cells. However, its application to investigate multiple components of temporally dynamic systems, such as living cells and operational devices, has been hampered by the limited information content of the IP signal, which only covers a narrow spectral window (< 1 cm-1). Here, we present a straightforward approach for measuring two distinct IPM images utilizing the orthogonality between the in-phase and quadrature outputs of a lock-in amplifier, called dual-phase IR photothermal (DP-IP) detection. We demonstrate the feasibility of DP-IP detection for IPM in distinguishing two different micro-sized polymer beads.
Collapse
|
3
|
Li B, Xu J, Kocoj CA, Li S, Li Y, Chen D, Zhang S, Dou L, Guo P. Dual-Hyperspectral Optical Pump-Probe Microscopy with Single-Nanosecond Time Resolution. J Am Chem Soc 2024; 146:2187-2195. [PMID: 38216555 DOI: 10.1021/jacs.3c12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 μm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film-substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joy Xu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
4
|
Park C, Lim JM, Hong SC, Cho M. Monitoring the synthesis of neutral lipids in lipid droplets of living human cancer cells using two-color infrared photothermal microscopy. Chem Sci 2024; 15:1237-1247. [PMID: 38274065 PMCID: PMC10806728 DOI: 10.1039/d3sc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/25/2023] [Indexed: 01/27/2024] Open
Abstract
There has been growing interest in the functions of lipid droplets (LDs) due to recent discoveries regarding their diverse roles. These functions encompass lipid metabolism, regulation of lipotoxicity, and signaling pathways that extend beyond their traditional role in energy storage. Consequently, there is a need to examine the molecular dynamics of LDs at the subcellular level. Two-color infrared photothermal microscopy (2C-IPM) has proven to be a valuable tool for elucidating the molecular dynamics occurring in LDs with sub-micrometer spatial resolution and molecular specificity. In this study, we employed the 2C-IPM to investigate the molecular dynamics of LDs in both fixed and living human cancer cells (U2OS cells) using the isotope labeling method. We investigated the synthesis of neutral lipids occurring in individual LDs over time after exposing the cells to excess saturated fatty acids while simultaneously comparing inherent lipid contents in LDs. We anticipate that these research findings will reveal new opportunities for studying lesser-known biological processes within LDs and other subcellular organelles.
Collapse
Affiliation(s)
- Chanjong Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Physics, Korea University Seoul 02841 Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
5
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
6
|
Samolis P, Zhu X, Sander MY. Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles. Anal Chem 2023; 95:16514-16521. [PMID: 37880191 PMCID: PMC10652238 DOI: 10.1021/acs.analchem.3c02352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.
Collapse
Affiliation(s)
- Panagis
D. Samolis
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedong Zhu
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michelle Y. Sander
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Brookline, Massachusetts 02446, United States
| |
Collapse
|
7
|
Samolis PD, Sander MY, Hong MK, Erramilli S, Narayan O. Thermal transport across membranes and the Kapitza length from photothermal microscopy. J Biol Phys 2023; 49:365-381. [PMID: 37477759 PMCID: PMC10397174 DOI: 10.1007/s10867-023-09636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green's function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.
Collapse
Affiliation(s)
- Panagis D Samolis
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Michelle Y Sander
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Mi K Hong
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Shyamsunder Erramilli
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- The Photonics Center, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| | - Onuttom Narayan
- Department of Physics, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
8
|
Ishigane G, Toda K, Tamamitsu M, Shimada H, Badarla VR, Ideguchi T. Label-free mid-infrared photothermal live-cell imaging beyond video rate. LIGHT, SCIENCE & APPLICATIONS 2023; 12:174. [PMID: 37463888 DOI: 10.1038/s41377-023-01214-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Advancement in mid-infrared (MIR) technology has led to promising biomedical applications of MIR spectroscopy, such as liquid biopsy or breath diagnosis. On the contrary, MIR microscopy has been rarely used for live biological samples in an aqueous environment due to the lack of spatial resolution and the large water absorption background. Recently, mid-infrared photothermal (MIP) imaging has proven to be applicable to 2D and 3D single-cell imaging with high spatial resolution inherited from visible light. However, the maximum measurement rate has been limited to several frames s-1, limiting its range of use. Here, we develop a significantly improved wide-field MIP quantitative phase microscope with two orders-of-magnitude higher signal-to-noise ratio than previous MIP imaging techniques and demonstrate live-cell imaging beyond video rate. We first derive optimal system design by numerically simulating thermal conduction following the photothermal effect. Then, we develop the designed system with a homemade nanosecond MIR optical parametric oscillator and a high full-well-capacity image sensor. Our high-speed and high-spatial-resolution MIR microscope has great potential to become a new tool for life science, in particular for live-cell analysis.
Collapse
Affiliation(s)
- Genki Ishigane
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Toda
- Department of Physics, The University of Tokyo, Tokyo, Japan
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Miu Tamamitsu
- Department of Physics, The University of Tokyo, Tokyo, Japan
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Shimada
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Takuro Ideguchi
- Department of Physics, The University of Tokyo, Tokyo, Japan.
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. SCIENCE ADVANCES 2023; 9:eadg8814. [PMID: 37315131 PMCID: PMC10266719 DOI: 10.1126/sciadv.adg8814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.
Collapse
Affiliation(s)
- Jiaze Yin
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Lu Lan
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|