1
|
Wen X, Chen Y, He Y, Yuan R, Chen S. Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis. Anal Chem 2025; 97:2094-2102. [PMID: 39841891 DOI: 10.1021/acs.analchem.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy. Astonishingly, the IR@PFN nanoparticles (NPs) synthesized from IR 783 and PFN by a nanoprecipitation method emitted a strong coreactant-free NIR-ECL signal at +1.05 V, and the maximum emission wavelength was 815 nm. IR@PFN NPs were integrated in a spontaneous entropy-driven chain replacement (ESDR) reaction to achieve ECL analysis of microRNA-21 (miRNA-21), and the limit of detection was as low as 0.25 fM. IR@PFN NPs created a promising coreactant-free NIR-ECL platform for bioanalysis and imaging, providing a novel NIR-ECL detection method for miRNA-21.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingying Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
2
|
Fu L, Dong P, Liu Z, Li Q, Guo Y. Unary Au Nanocrystal with Prestored Electrons and Intrinsic Low Hole-Injected Potential for Low-Triggering Potential Electrochemiluminescence. Anal Chem 2024; 96:18254-18261. [PMID: 39480793 DOI: 10.1021/acs.analchem.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive tert-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive tert-butylamine borane or N2H4·H2O containing a -C-N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/tert-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Pengjie Dong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Zerui Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| |
Collapse
|
3
|
Wu P, Zhang L, Zhang G, Cheng L, Zhang F, Li Y, Lei Y, Qi H, Zhang C, Gao Q. Highly Sensitive Electrochemiluminescence Biosensing Method for SARS-CoV-2 N Protein Incorporating the Micelle Probes of Quantum Dots and Dibenzoyl Peroxide Using the Screen-Printed Carbon Electrode Modified with a Carboxyl-Functionalized Graphene. Anal Chem 2024; 96:17345-17352. [PMID: 39417563 DOI: 10.1021/acs.analchem.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obtaining stable electrochemiluminescence (ECL) emissions from a hydrophobic luminophore in aqueous solutions and designing a method without the use of an exogenous coreactant are promising for ECL biosensing. Here, a highly sensitive signal-on ECL immunoassay for the SARS-CoV-2 N protein was developed using micelles as an ECL tag. The micelles were prepared by coencapsulating the luminophore hydrophobic CdSe/ZnS quantum dots and coreactant dibenzoyl peroxide within the hydrophobic core of micelles. The ECL probe was obtained by covalently bonding a SARS-CoV-2 N protein-binding aptamer onto the micelle surface. The construction of the immunosensor was initiated by the immobilization of the anti-SARS-CoV-2 N protein antibody onto the screen-printed carbon electrode (SPCE) with a -COOH-functionalized surface. The surface functionalization of SPCEs was achieved through paste-exfoliated graphene, which was modified with a -COOH group through supramolecular-covalent scaffolds on SPCE. Upon achieving sandwich complexes on the immunosensor, an efficient ECL signal response at -1.4 V versus Ag/AgCl was obtained in phosphate buffer solution. The ECL assay was used for the sensitive determination of SARS-CoV-2 N protein with the linear range from 0.01 to 50 ng mL-1, and the detection limit was 3.0 pg mL-1. The immunosensor showed good reproducibility and stability, and the ECL immunoassay was used to determine the SARS-CoV-2 N protein in serum samples. The proposed approach to obtain micelles is versatile for the preparation of stable ECL luminophores by using hydrophobic materials, and the strategy provides an alternative for ECL bioassays based on the coreactant route.
Collapse
Affiliation(s)
- Pengxue Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liang Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guilan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Linfeng Cheng
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Fanglin Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yulan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yingfeng Lei
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Wang X, Jia C, Wang S, Dong Y. Coreactant-free strong Ru(bpy) 32+ ECL at ionic liquid modified electrode and its application in sensitive detection of glucose based on resonance energy transfer. Talanta 2024; 270:125584. [PMID: 38142614 DOI: 10.1016/j.talanta.2023.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
In this work, we have realized the strong anodic ECL emission of Ru(bpy)32+ at ionic liquid (N-butylpyridinium tetrafluoroborate) modified electrode without additional coreactant. Methylene blue (MB) could accept the energy of Ru(bpy)32+ ECL to construct resonance energy transfer (ECL-RET) system, leading to the decrease of ECL signal. In the presence of glucose oxidase, hydrogen peroxide generated from the oxidation process of glucose could oxidize MB and block the ECL-RET route, resulting in the recovery of ECL signal. As a consequence, the designed sensor showed outstanding performance for "signal-on" detection of glucose in the concentration range of 10 μM to 1 mM, and the detection limit was determined as 1.75 μM. Importantly, this study revealed new roles of ILs in the fabrication of coreactant-free ECL sensing, which might open up a promising route for the potential design and implement in clinical analysis.
Collapse
Affiliation(s)
- Xinyi Wang
- Institute of Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| | - Changbo Jia
- Institute of Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Shangbing Wang
- Institute of Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| | - Yongping Dong
- Institute of Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
5
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
6
|
Zhu H, Zhou JL, Ma C, Jiang D, Cao Y, Zhu JJ. Self-Enhanced Electrochemiluminescence Imaging System Based on the Accelerated Generation of ROS under Ultrasound. Anal Chem 2023. [PMID: 37463345 DOI: 10.1021/acs.analchem.3c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemiluminescence (ECL) imaging, as an optical technology, has been developed at full tilt in the field of life science and nanomaterials. However, the relatively low ECL intensity or the high co-reactant concentration needed in the electrochemical reaction blocks its practical application. Here, we developed an ECL imaging system based on the rGO-TiO2-x composite material, where the co-reactant, reactive oxygen species (ROS), is generated in situ under the synergetic effect of of ultrasound (US) and electric irradiation. The rGO-TiO2-x composites facilitate the separation of electron (e-) and hole (h+) pairs and inhibit recombination triggered by external US irradiation due to the high electroconductivity of rGO and oxygen-deficient structures of TiO2, thus significantly boosting ROS generation. Furthermore, the increased defects on rGO accelerate the electron transfer rate, improving the electrocatalytic performance of the composite and forming more ROS. This high ultrasonic-electric synergistic efficacy is demonstrated through the enhancement of photon emission. Compared with the luminescence intensity triggered by US irradiation and electric field, an enhancement of ∼20-fold and 10-fold of the US combined with electric field-triggered emission is observed from this composite. Under the optimized conditions, using dopamine (DA) as a model target, the sensitivity of the US combined ECL strategy for detection of DA is two orders of magnitude higher than that of the ECL method. The successful detection of DA at low concentrations makes us believe that this strategy provides the possibility of applying ECL imaging for cellular single-molecule analysis and cancer therapy.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Gao X, Ren X, Ai Y, Li M, Zhang B, Zou G. Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag. Biosens Bioelectron 2023; 236:115418. [PMID: 37279619 DOI: 10.1016/j.bios.2023.115418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Multiplexed gene assay for simultaneously detecting the multi-targets of nucleic acids is strongly anticipated for the accurate diseases diagnosis and prediction, and all commercial available gene assays for IVD are a kind of single-target assay. Herein, a dual-potential encoded and coreactant-free electrochemiluminescence (ECL) strategy is proposed for the multiplexed gene assay, which can be conveniently carried out by directly oxidizing the same luminescent tag of dual-stabilizers-capped CdTe nanocrystals (NCs). The CdTe NCs linked with sulfhydryl-RNA via Cd-S bond merely exhibits one ECL process around 0.32 V with a narrow triggering-potential-window of 0.35 V, while CdTe NCs linked with amino-RNA via amide linkage solely gives off one ECL process around 0.82 V with a narrow triggering-potential-window of 0.30 V. Multiplexing ECL of both sulfhydryl-RNA-functionalized CdTe NCs and amino-RNA-functionalized CdTe NCs can be utilized to simultaneously detect the open reading frame 1ab (ORF1ab) and the nucleoprotein (N) genes without crosstalk, in which ECL of sulfhydryl-RNA-functionalized CdTe NCs can dynamically determine ORF1ab from 200 aM to 10 fM with a limit of detection (LOD) of 100 aM, while ECL of amino-RNA-functionalized CdTe NCs can linearly detect N gene from 5 fM to 1 pM with a LOD of 2 fM. Post-engineering CdTe NCs with RNA in a labeling-bond engineering way would provide a potential-selective and encoded ECL strategy for multiplexed gene assay with one luminophore.
Collapse
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
8
|
Chen X, Liu Y, Wang B, Liu X, Lu C. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Gao X, Ren X, Ai Y, Li M, Zhang B, Zou G. Luminophore-Surface-Engineering-Enabled Low-Triggering-Potential and Coreactant-Free Electrochemiluminescence for Protein Determination. Anal Chem 2023; 95:6948-6954. [PMID: 37083347 DOI: 10.1021/acs.analchem.3c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Coreactant-free electrochemiluminescence (ECL) is promising for removing the exogenous effects of coreactant and simplify the operation procedures and setups of commercialized ECL bioassays. Herein, an electrosterically involved strategy for achieving a low-triggering-potential (+0.21 V vs Ag/AgCl) and coreactant-free ECL from dual-stabilizer-capped CdTe nanocrystals (NCs) is proposed with mercaptopropionic acid (MPA) and hexametaphosphate (HMP) as the capping agents of luminophores. Upon employing the CdTe NCs as the ECL tag for the immunoassay, all the tags in the bioconjugates of the CdTe NCs and the secondary antibody (Ab2|CdTe) as well as in the final achieved sandwich-type immunocomplexes can exhibit efficient coreactant-free ECL with an electrosterically involved triggering potential nature. The bioconjugates of Ab2|CdTe with Ab2 no more than 30 kDa, such as the thyroid stimulating hormone (30 kDa) and the recombinant pro-gastrin releasing peptide (ProGRP, 14 kDa), merely exhibit coreactant-free ECL around +0.24 V, while bioconjugates of Ab2|CdTe with an Ab2 beyond 30 kDa only give off coreactant-free ECL around +0.82 V. Due to the further enhanced electrosteric effect in sandwich-type immunocomplexes, only the ECL immunosensor with ProGRP as the target can give off coreactant-free ECL around +0.24 V. The electrosterically involved and coreactant-free ECL of CdTe NCs is consequently utilized to sensitively and selectively determine the molecular protein ProGRP, which demonstrates a wide linearity range from 0.1 to 2000 pg/mL and a low limit of detection at 0.05 pg/mL (S/N = 3). This low-triggering-potential and coreactant-free combined ECL platform indicates that engineering the surface of CdTe NCs with a protein can improve the performance of ECL tags in a protein-weight-involved electrosterical way.
Collapse
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Wang B, Wang C, Li Y, Liu X, Wu D, Wei Q. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS 2@Cu 2O–Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022; 147:4768-4776. [DOI: 10.1039/d2an01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive sandwiched electrochemiluminescence (ECL) immunosensor was built for the detection of cTnI. The ECL immunosensor had a low detection limit (2.90 fg mL−1) and wide detection range (10 pg mL−1 to 100 ng mL−1).
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|