1
|
Bao C, Deng L, Huang F, Yang M, Li X. Signal amplification strategies in photoelectrochemical sensing of carcinoembryonic antigen. Biosens Bioelectron 2024; 262:116543. [PMID: 38963951 DOI: 10.1016/j.bios.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.
Collapse
Affiliation(s)
- Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| |
Collapse
|
2
|
Cheng Z, He G, Liao R, Tan Y, Deng W. A sensitive immunosensing platform based on the high cathodic photoelectrochemical activity of Zr-MOF and dual-signal amplification of peroxidase-mimetic Fe-MOF. Bioelectrochemistry 2024; 157:108677. [PMID: 38430576 DOI: 10.1016/j.bioelechem.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Cathodic photoelectrochemical (PEC) analysis has received special concerns because of its outstanding anti-interference capability toward reductive substances in samples, so it is highly desirable to develop high-performance photocathodic materials for PEC analysis. Herein, a Zr-based metal-organic framework (Zr-MOF), MOF-525, is explored as a photoactive material in aqueous solution for the first time, which shows a narrow band-gap of 1.82 eV, excellent visible-light absorption, and high cathodic PEC activity. A sandwiched-type PEC immunosensor for detecting prostate-specific antigen (PSA) is fabricated by using MIL-101-NH2(Fe) label and MOF-525 photoactive material. MIL-101-NH2(Fe) as a typical Fe-MOF can serve as a peroxidase mimic to catalyze the production of precipitates on the photoelectrode. Both the produced precipitates and the MIL-101-NH2(Fe) labels can quench the photocathodic current, enabling "signal-off" immunosensing of PSA. The detection limit is 3 fg mL-1, and the linear range is between 10 fg mL-1 and 100 ng mL-1 for detecting PSA. The present study not only develops a high-performance Zr-MOF photoactive material for cathodic PEC analysis but also constructs a sensitive PEC immunosensing platform based on the dual-signal amplification of peroxidase-mimetic Fe-MOF.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Liao R, Dai S, Liu B, Deng W, Tan Y, Xie Q. Photocurrent Polarity Switchable Sensing of Hyaluronidase Activity by Regulating Electrostatic Interactions between Two Semiconductors. Anal Chem 2023; 95:16754-16760. [PMID: 37919241 DOI: 10.1021/acs.analchem.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Photocurrent polarity switchable photoelectrochemical (PEC) sensing has superior accuracy and anti-interference ability to conventional PEC sensing. The development of a novel strategy for photocurrent polarity switchable sensing is of great interest. Herein, a novel strategy for photocurrent polarity switchable sensing is reported by regulating electrostatic interactions between two semiconductor photoactive materials. Hyaluronic acid (HA)-modified CuO nanosheets show a negatively charged surface, which prevents the attachment of CuO nanosheets to negatively charged CdS nanodendrite-modified photoelectrodes because of the strong electrostatic repulsion. In the presence of hyaluronidase (HAase), the specific hydrolysis of HA on the surface of CuO by HAase can yield a positively charged surface, so CuO can be attached to a CdS-modified photoelectrode via electrostatic attraction, leading to photocurrent polarity switching. The photocurrent polarity switchable detection of HAase activity is achieved with an ultralow detection limit of 2 × 10-3 U mL-1 and a wide linear detection range between 0.01 and 100 U mL-1. This work provides a new and effective photocurrent polarity switching strategy for PEC sensing and a simple and efficient method for detecting HAase activity.
Collapse
Affiliation(s)
- Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Biao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Wang H, Wan X, Wang X, Li M, Tang D. Ultrathin mesoporous BiOCl nanosheets-mediated liposomes for photoelectrochemical immunoassay with in-situ signal amplification. Biosens Bioelectron 2023; 239:115628. [PMID: 37633001 DOI: 10.1016/j.bios.2023.115628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Designing new biochemical sensors and achieving selectivity and high-sensitivity analysis is one of main research directions for immunoassays. Herein, a liposome-amplification photoelectrochemical (PEC) immunoassay was developed using ultrathin mesoporous bismuth chloride oxide nanosheets (BiOCl MSCN) for the highly selective and sensitive detection of carcinoembryonic antigen (CEA). Based on good photocurrent response of BiOCl MSCN toward dopamine, a liposome-conjugated secondary antibody loaded with dopamine was added for specific recognition in the presence of CEA. After the lysis treatment, the liberated dopamine was injected into the three-electrode electrolytic cell to enhance the photocurrent of BiOCl MSCN. Under the optimized conditions, the constructed liposome-mediated PEC immunoassay showed high sensitivity against CEA, with a dynamic response in the linear range of 0.05 ng mL-1 to 100 ng mL-1 and a detection limit of 35 pg mL-1. The present study proposes a new approach to the liposome-mediated PEC immunoassay constructed on ultrathin mesoporous BiOCl nanosheets, which can be used to target further the study of the sensing mechanism.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xinyu Wan
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xin Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
5
|
Wu Z, Han F, Wang T, Guan L, Liang Z, Han D, Niu L. A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti 3C 2/TiO 2 Heterostructure for Monitoring of Dopamine. BIOSENSORS 2023; 13:bios13050526. [PMID: 37232887 DOI: 10.3390/bios13050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Herein, a novel, recognition-molecule-free electrode based on Ti3C2/TiO2 composites was synthesized using Ti3C2 as the Ti source and TiO2 in situ formed by oxidation on the Ti3C2 surface for the selective detection of dopamine (DA). The TiO2 in situ formed by oxidation on the Ti3C2 surface not only increased the catalytically active surface for DA binding but also accelerated the carrier transfer due to the coupling between TiO2 and Ti3C2, resulting in a better photoelectric response than pure TiO2. Through a series of experimental conditions optimization, the photocurrent signals obtained by the MT100 electrode were proportional to the DA concentration from 0.125 to 400 µM, with a detection limit estimated at 0.045 µM. We also monitored DA in human blood serum samples using the MT100 electrode. The results showed good recovery, demonstrating the promising use of the sensor for the analysis of DA in real samples.
Collapse
Affiliation(s)
- Zhifang Wu
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| | - Fangjie Han
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| | - Tianqi Wang
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| | - Liwei Guan
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| | - Zhishan Liang
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| | - Dongxue Han
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Tethnology Center of Guangdong Province, Guangzhou 510230, China
| | - Li Niu
- School of Economics and Statistics c/o Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|