1
|
Raiko K, Nääjärvi O, Ekman M, Koskela S, Soukka T, Martiskainen I, Salminen T. Improved sensitivity and automation of a multi-step upconversion lateral flow immunoassay using a 3D-printed actuation mechanism. Anal Bioanal Chem 2024; 416:1517-1525. [PMID: 38280018 PMCID: PMC10861389 DOI: 10.1007/s00216-024-05156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
The development of sensitive point-of-care (POC) assay platforms is of interest for reducing the cost and time of diagnostics. Lateral flow assays (LFAs) are the gold standard for POC systems, but their sensitivity as such is inadequate, for example, in the case of cardiac diagnostics. The performance can be improved by incorporating different steps, such as pre-incubation to prolong the interaction time between sample and reporter for immunocomplex formation, and washing steps for background reduction. However, for POC assays, manual steps by the assay conductor are not desired. In this research, upconverting nanoparticles (UCNPs) were coated with poly(acrylic acid) (PAA) and conjugated to anti-cTnI antibodies, yielding non-clustering particles with low non-specific binding. The performance of cTnI-LFA in the PAA-anti-cTnI-UCNPs was compared to the same UCNPs with a commercial carboxyl surface. A kitchen-timer mechanism was embedded in a 3D-printed housing to produce a low-cost actuator facilitating a timed pre-incubation step for reporter and sample, and a washing step, to enable a multi-step cTnI-LFA with minimized manual labour. PAA-UCNPs showed improved mobility on nitrocellulose compared to those with a commercial surface. The mechanical actuator system was shown to improve sensitivity compared to a labour-intensive multi-step dipstick method, despite pre-incubation occurring during shaking and heating in the dipstick method. The limit of detection decreased from 7.6 to 1.5 ng/L cTnI in human plasma. The presented actuator can be easily modified for sensitivity improvement in the LFA for different analytes via pre-incubation and washing steps.
Collapse
Affiliation(s)
- Kirsti Raiko
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Oskari Nääjärvi
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Miikka Ekman
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Sonja Koskela
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tero Soukka
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Iida Martiskainen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Teppo Salminen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
2
|
Song Z, Guo H, Suo Y, Zhang Y, Zhang S, Qiu P, Liu L, Chen B, Cheng Z. Enhanced NIR-II Fluorescent Lateral Flow Biosensing Platform Based on Supramolecular Host-Guest Self-Assembly for Point-of-Care Testing of Tumor Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37886790 DOI: 10.1021/acsami.3c14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Point-of-care detection of tumor biomarkers with high sensitivity remains an enormous challenge in the early diagnosis and mass screening of cancer. Fluorescent lateral flow immunoassay (LFA) is an attractive platform for point-of-care testing due to its inherent advantages. Particularly, a fluorescent probe is crucial to improving the analytical performance of the LFA platform. Herein, we developed an enhanced second near-infrared (NIR-II) LFA (ENIR-II LFA) platform based on supramolecular host-guest self-assembly for detection of the prostate-specific antigen (PSA) as a model analyte. In this platform, depending on the effective supramolecular surface modification strategy, cucurbit[7]uril (CB[7])-covered rare-earth nanoparticles (RENPs) emitting in the NIR-II (1000-1700 nm) window were prepared and employed as an efficient fluorescent probe (RENPs-CB[7]). Benefiting from its superior optical properties, such as low autofluorescence, excellent photostability, enhanced fluorescence intensity, and increased antibody-conjugation efficiency, the ENIR-II LFA platform displayed a wide linear detection range from 0.65 to 120 ng mL-1, and the limit of detection was down to 0.22 ng mL-1 for PSA, which was 18.2 times lower than the clinical cutoff value. Moreover, the testing time was also shortened to 6 min. Compared with the commercial visible fluorescence LFA kit (VIS LFA) and the previously reported NIR-II LFA based on a RENPs-PAA probe, this ENIR-II LFA demonstrated more competitive advantages in analytical sensitivity, detection range, testing time, and production cost. Overall, the ENIR-II LFA platform offers great potential for the highly sensitive, rapid, and convenient detection of tumor biomarkers and is expected to serve as a useful technique in the general population screening of the high-incidence cancer region.
Collapse
Affiliation(s)
- Zhaorui Song
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Hong Guo
- Clinical Laboratory, Qingdao Women and Children's Hospital Affiliated, Qingdao University, Qingdao 266034, China
| | - Yongkuan Suo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongde Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Peng Qiu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Lifu Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Botong Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Zhen Cheng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|