1
|
Harrilal CP, Garimella SVB, Norheim RV, Ibrahim YM. Development of a Platform for High-Resolution Ion Mobility Separations Coupled with Messenger Tagging Infrared Spectroscopy for High-Precision Structural Characterizations. Anal Chem 2024. [PMID: 39607321 DOI: 10.1021/acs.analchem.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The ability to uniquely identify a compound requires highly precise and orthogonal measurements. Here we describe a newly developed analytical platform that integrates high resolution ion mobility and cryogenic vibrational ion spectroscopy for high-precision structural characterizations. This platform allows for the temporal separation of isomeric/isobaric ions and provides a highly sensitive description of the ion's adopted geometry in the gas phase. The combination of these orthogonal structural measurements yields precise descriptors that can be used to resolve between and confidently identify highly similar ions. The unique benefits of our instrument, which integrates a structures for lossless ion manipulations ion mobility (SLIM IM) device with messenger tagging infrared spectroscopy, include the ability to perform high-resolution ion mobility separations and to record the IR spectra of all ions simultaneously. The SLIM IM device, with its 13 m separation path length, allows for multipass experiments to be performed for increased resolution as needed. It is integrated with an Agilent qTOF MS where the collision cell was replaced with a cryogenically held (30 K) TW-SLIM module. The cryo-SLIM is operated in a novel manner that allows ions to be streamed through the device and collisionally cooled to a temperature where they can form noncovalently bound N2 complexes that are maintained as they exit the device and are detected by the TOF mass analyzer. The instrument can be operated in two modes: IMS+IR where the IR spectra for mobility-selected ions can be recorded and IR-only mode where the IR spectra for all mass-resolved ions can be recorded. In IR-only mode, IR spectra (400 cm-1 spectral range) can be recorded in as short as 2 s for high throughput measurements. This work details the construction of the instrument and modes of operation. It provides initial benchmarking of CCS and IR measurements to demonstrate the utility of this instrument for targeted and untargeted approaches.
Collapse
Affiliation(s)
- Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Kingsley S, Hoover M, Pettit-Bacovin T, Sawyer AR, Chouinard CD. SLIM-Based High-Resolution Ion Mobility Reveals New Structural Insights into Isomeric Vitamin D Metabolites and their Isotopologues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2650-2658. [PMID: 38709652 DOI: 10.1021/jasms.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Testing for vitamin D deficiency remains a high-volume clinical assay, much of which is done using mass spectrometry-based methods to alleviate challenges in selectivity associated with immunoassays. Ion mobility-mass spectrometry (IM-MS) has been proposed as a rapid alternative to traditional LC-MS/MS methods, but understanding the structural ensemble that contributes to the ion mobility behavior of this molecular class is critical. Herein we demonstrate the first application of high-resolution Structures for Lossless Ion Manipulations (SLIM) IM separations of several groups of isomeric vitamin D metabolites. Despite previous IM studies of these molecules, the high resolving power of SLIM (Rp ∼ 200) has revealed additional conformations for several of the compounds. The highly similar collision cross sections (CCS), some differing by as little as 0.7%, precluded adequate characterization with low-resolution IM techniques where, in some cases, wider than expected peak widths and/or subtle shoulders may have hinted at their presence. Importantly, these newly resolved peaks often provided a unique mobility that could be used to separate isomers and provides potential for their use in quantification. Lastly, the contribution of isotopic labeling to arrival time distribution for commonly used 13C- and deuterium-labeled internal standards was explored. Minor shifts of ∼0.2-0.3% were observed, and in some instances these shifts were specific to the conformer being measured (i.e., "closed" vs "open"). Accounting for these shifts is important during raw data extraction to ensure reproducible peak area integration, which will be a critical consideration in future quantitative applications.
Collapse
Affiliation(s)
- Selena Kingsley
- Clemson University, Department of Chemistry; Clemson, South Carolina 29634, United States
- Lake Superior State University, Department of Chemistry, Sault Sainte Marie, Michigan 49783, United States
| | - Makenna Hoover
- Clemson University, Department of Chemistry; Clemson, South Carolina 29634, United States
| | - Terra Pettit-Bacovin
- Clemson University, Department of Chemistry; Clemson, South Carolina 29634, United States
| | - Anna Rose Sawyer
- Clemson University, Department of Chemistry; Clemson, South Carolina 29634, United States
| | | |
Collapse
|
3
|
Williamson DL, Windsor HM, Nagy G. Isolating the Contributions from Moments of Inertia in Isotopic Shifts Measured by High-Resolution Cyclic Ion Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2579-2585. [PMID: 38654703 DOI: 10.1021/jasms.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The unexpected finding that isotopomers (i.e., isotopic isomers) can be separated with high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS) has raised new structural considerations affecting an ion's mobility, namely its center of mass (CoM) and moments of inertia (MoI). Unfortunately, thus far, no studies have attempted to experimentally isolate either CoM or MoI, as they are intrinsically linked by their definitions, where MoI is calculated in relation to CoM. In this study, we designed and synthesized four isotopically labeled tetrapropylammonium (TAA3) ions, each with a unique mass distribution. Three of the synthesized TAA3 ions were labeled symmetrically, thus having identical CoM but differing MoI, which we verified using density functional theory (DFT) calculations. Consequently, we were able to isolate the effect of MoI changes in high-resolution IMS-MS separations. Cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS) separations of the isotopically labeled TAA3 variants revealed isotopic mobility shifts attributable solely to changes in MoI. A 60-m cIMS-MS separation demonstrated that two nominally isobaric TAA3 pseudoisotopomers could be partially resolved, showcasing potential feasibility for isotopomer separations on commercially available IMS-MS platforms. With our previously established collision cross section (CCS) calibration protocol, we also quantified the relationship between MoI and CCS. Our results represent the first demonstration of IMS-MS separations based solely on MoI differences. We believe these findings will contribute important evidence to the growing body of literature on the physical nature of isotopic shifts in IMS-MS separations and work toward more accurate CCS predictions.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Haisley M Windsor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Naylor CN, Nagy G. Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39087820 DOI: 10.1002/mas.21902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Zhang H, Chang Q, Chen H, Xie Y, Bai Y, Wang X, Li L, Pang G. A computational and experimental study of cis-trans isomeric pesticides based on collision-induced dissociation of high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9736. [PMID: 38533576 DOI: 10.1002/rcm.9736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/21/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE Pesticide isomers are widely available in agricultural production and may vary widely in biological activity, potency, and toxicity. Chromatographic and mass spectrometric analysis of pesticide isomers is challenging due to structural similarities. METHODS Based on liquid chromatography time-of-flight mass spectrometry, identification of cis-trans isomeric pesticides was achieved through retention time, characteristic fragment ions, and relative abundance ratio. Furthermore, theoretical and basic research has been conducted on the differences in characteristic fragment ions and their relative abundance ratios of cis-trans isomers. On the one hand, the cleavage pathways of six cis-trans isomers were elucidated through collision-induced dissociation to explain different fragment ions of the isomers. On the other hand, for those with the same fragment ions but different abundance ratios, energy-resolved mass spectrometry combined with computational chemical density functional theory in terms of kinetics, thermodynamics, and bond lengths was employed to explain the reasons for the differences in characteristic fragment ions and their abundance ratios. RESULTS A high-resolution mass spectrometry method was developed for the separation and analysis of cis-trans isomers of pesticides in traditional Chinese medicine Radix Codonopsis, and six pesticide isomers were distinguished by retention time, product ions, and relative abundance ratios. The limits of quantification of the six pesticides were up to 10 μg/kg, and the linear ranges of them were 10-200 μg/kg, with coefficients of determination (R2) > 0.99, which demonstrated the good linearity of the six pesticides. The recoveries of the pesticides at spiked concentrations of 10, 20, and 100 μg/kg reached 70-120% with relative standard deviations ≤20%. CONCLUSIONS It was demonstrated that the application of the method was well suited for accurate qualitative and quantitative analysis for isomers with different structures, which could avoid false-negative results caused by ignoring other isomers effectively.
Collapse
Affiliation(s)
- Hongyan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, China
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Lanzhou, Gansu, China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hui Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yujie Xie
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yuting Bai
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xingzhi Wang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Lanzhou, Gansu, China
| | - Ling Li
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Guofang Pang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
6
|
Nagy G. High-resolution ion mobility separations coupled to mass spectrometry: What's next? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5014. [PMID: 38605463 DOI: 10.1002/jms.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Herein, I provide a personal perspective on high-resolution multipass ion mobility spectrometry-mass spectrometry (IMS-MS), with a specific emphasis on cyclic (cIMS) and structures for lossless ion manipulations (SLIM IMS)-based separations. My overarching goal for this perspective was to detail what I believe will be the key important areas in which IMS-MS will help shape the bioanalytical community and especially omics-based research.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Wörner TP, Thurman HA, Makarov AA, Shvartsburg AA. Expanding Differential Ion Mobility Separations into the MegaDalton Range. Anal Chem 2024; 96:5392-5398. [PMID: 38526848 DOI: 10.1021/acs.analchem.3c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Along with mass spectrometry (MS), ion mobility separations (IMS) are advancing to ever larger biomolecules. The emergence of electrospray ionization (ESI) and native MS enabled the IMS/MS analyses of proteins up to ∼100 kDa in the 1990s and whole protein complexes and viruses up to ∼10 MDa since the 2000s. Differential IMS (FAIMS) is substantially orthogonal to linear IMS based on absolute mobility K and offers exceptional resolution, unique selectivity, and steady filtering readily compatible with slower analytical methods such as electron capture or transfer dissociation (ECD/ETD). However, the associated MS stages had limited FAIMS to ions with m/z < 8000 and masses under ∼300 kDa. Here, we integrate high-definition FAIMS with the Q-Exactive Orbitrap UHMR mass spectrometer that can handle m/z up to 80,000 and MDa-size ions in the native ESI regime. In the initial evaluation, the oligomers of monoclonal antibody adalimumab (148 kDa) are size-selected up to at least the nonamers (1.34 MDa) with m/z values up to ∼17,000. This demonstrates the survival and efficient separation of noncovalent MDa assemblies in the FAIMS process, opening the door to novel analyses of the heaviest macromolecules.
Collapse
Affiliation(s)
- Tobias P Wörner
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
8
|
Critch-Doran O, Jenkins K, Hashemihedeshi M, Mommers AA, Green MK, Dorman FL, Jobst KJ. Toward Part-per-Million Precision in the Determination of an Ion's Collision Cross Section Using Multipass Cyclic Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:775-783. [PMID: 38498916 DOI: 10.1021/jasms.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In cyclic ion mobility (cIMS), ions are permitted to travel multiple passes around the drift cell, increasing the distance traveled and the relative separation between ions. This study tests the hypothesis that multiple passes around the cell can also result in improved precision when measuring an ion's mobility and the collision cross section (TWCCS) derived therefrom. Experiments were performed with a diverse set of compounds, including 16 polycyclic aromatic hydrocarbons using gas chromatographic atmospheric pressure chemical ionization and a set of drug molecules by direct infusion electrospray ionization. The average periodic drift time, viz., the average time required for the ion to travel around the cIMS cell once, shifts dramatically, approaching part-per-million (ppm) precision as the number of passes increases to ∼100. Extrapolation of the precision of the CCS values with respect to the number of passes led to the prediction that the precision will reach 1000 ppm after 50 passes, 100 ppm after 100 passes, and <10 ppm after 150 passes. Experiments wherein the number of passes exceeded 100 produced TWCCS values having within-run precisions ranging between 15 and 117 ppm. The improved precision with an increasing number of passes may be a consequence of mitigating space-charge effects by allowing the ions to occupy a larger region of the cIMS cell. A method is proposed to enable practical measurements of TWCCS with ppm precision and is demonstrated to characterize an unknown drug mixture.
Collapse
Affiliation(s)
- Olivia Critch-Doran
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Kevin Jenkins
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Alexander A Mommers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - M Kirk Green
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
9
|
Williamson DL, Nagy G. Coupling Isotopic Shifts with Collision Cross-Section Measurements for Carbohydrate Characterization in High-Resolution Ion Mobility Separations. Anal Chem 2023; 95:13992-14000. [PMID: 37683280 PMCID: PMC10538943 DOI: 10.1021/acs.analchem.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Herein, we introduce a two-dimensional strategy to better characterize carbohydrate isomers. In a single experiment, we can derive cyclic ion mobility-mass spectrometry (cIMS-MS)-based collision cross-section (CCS) values in conjunction with measuring isotopic shifts through the relative arrival times of light and heavy isotopologues. These isotopic shifts were introduced by permethylating carbohydrates with either light, CH3, or heavy, CD3, labels at every available hydroxyl group to generate a light/heavy pair of isotopologues for every individual species analyzed. We observed that our calculated CCS values, which were exclusively measured for the light isotopologues, were orthogonal to our measured isotopic shifts (i.e., relative arrival time values between heavy and light permethylated isotopologues). Our permethylation-induced isotopic shifts scaled well with increasing molecular weight, up to ∼m/z 1300, expanding the analysis of isotopic shifts to molecules 3-4 times as large as those previously studied. Our presented use of coupling CCS values with the measurement of isotopic shifts in a single cIMS-MS experiment is a proof-of-concept demonstration that our two-dimensional approach can improve the characterization of challenging isomeric carbohydrates. We envision that our presented 2D approach will have broad utility for varying molecular classes as well as being amenable to many forms of derivatization.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Greer C, Kinlein Z, Clowers BH. SLIM Tricks: Tools, Concepts, and Strategies for the Development of Planar Ion Guides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1715-1723. [PMID: 37470389 PMCID: PMC10693990 DOI: 10.1021/jasms.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Traveling wave ion mobility experiments using planar electrode structures (e.g., structures for lossless ion manipulation, TW-SLIM) leverage the mature manufacturing capabilities of printed circuit boards (PCBs). With routine levels of mechanical precision below 150 μm, the conceptual flexibility afforded by PCBs for use as planar ion guides is expansive. To date, the design and construction of TW-SLIM platforms require considerable legacy expertise, especially with respect to simulation and circuit layout strategies. To lower the barrier of TW-SLIM implementation, we introduce Python-based interactive tools that assist in graphical layout of the core electrode footprints for planar ion guides with minimal user inputs. These scripts also export the exact component locations and assignments for direct integration into KiCad and SIMION for PCB finalization and ion flight simulations. The design concepts embodied in the set of scripts comprising SLIM Pickins (PCB CAD generation) and pigsim (SIMION workspace generation) build upon the lessons learned in the independent development of the research-grade TW-SLIM platforms in operation at WSU. Due to the inherent flexibility of the PCB manufacturing process and the time devoted to board layouts prior to manufacturing, both scripts serve to enable rapid, iterative design considerations. Because only a few predefined parameters are necessary (i.e., the TW-SLIM monomer width, x position following a TW Turn, and y position following a TW Turn) it is possible to design the exact component layouts and accompanying simulation space in a manner of minutes. There is no known limitation to the board layout capacities of the scripts, and the size of a designed layout is ultimately constrained by the abilities of the final PCB design and simulation tools, KiCad and SIMION, to accommodate the thousands of electrodes comprising the final design (i.e., RAM and software overhead). Toward removing the barriers to exploring new SLIM tracks and the likelihood of layout errors that require considerable revision and engineering time, the SLIM Pickins and pigsim tools (included as Supporting Information) allow the user to quickly design a length of planar ion guide, simulate its abilities to confine and transmit ions, compare hypothetical board outlines to given vacuum chamber dimensions, and generate a near-production ready PCB CAD file. In addition to these tools, this report outlines a series of cost-saving strategies with respect to vacuum feedthroughs and vacuum chamber design for TW ion mobility experiments using planar ion guides.
Collapse
Affiliation(s)
- Cullen Greer
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
11
|
Ma Y, Yu S, Mu D, Cheng J, Qiu L, Cheng X. Liquid chromatography-tandem mass spectrometry in fat-soluble vitamin deficiency. Clin Chim Acta 2023; 548:117469. [PMID: 37419302 DOI: 10.1016/j.cca.2023.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Fat-soluble vitamins, including vitamins A, D, E, and K, are essential for maintaining normal body function and metabolism. Fat-soluble vitamin deficiency may lead to bone diseases, anemia, bleeding, xerophthalmia, etc. Early detection and timely interventions are significant for preventing vitamin deficiency-related diseases. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is developing into a potent instrument for the precise detection of fat-soluble vitamins due to its high sensitivity, high specificity, and high resolution.
Collapse
Affiliation(s)
- Yichen Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jin Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
12
|
Harrilal CP, Garimella SVB, Chun J, Devanathan N, Zheng X, Ibrahim YM, Larriba-Andaluz C, Schenter G, Smith RD. The Role of Ion Rotation in Ion Mobility: Ultrahigh-Precision Prediction of Ion Mobility Dependence on Ion Mass Distribution and Translational to Rotational Energy Transfer. J Phys Chem A 2023. [PMID: 37330993 DOI: 10.1021/acs.jpca.3c01264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The role of ion rotation in determining ion mobilities is explored using the subtle gas phase ion mobility shifts based on differences in ion mass distributions between isotopomer ions that have been observed with ion mobility spectrometry (IMS) measurements. These mobility shifts become apparent for IMS resolving powers on the order of ∼1500 where relative mobilities (or alternatively momentum transfer collision cross sections; Ω) can be measured with a precision of ∼10 ppm. The isotopomer ions have identical structures and masses, differing only in their internal mass distributions, and their Ω differences cannot be predicted by widely used computational approaches, which ignore the dependence of Ω on the ion's rotational properties. Here, we investigate the rotational dependence of Ω, which includes changes to its collision frequency due to thermal rotation as well as the coupling of translational to rotational energy transfer. We show that differences in rotational energy transfer during ion-molecule collisions provide the major contribution to isotopomer ion separations, with only a minor contribution due to an increase in collision frequency due to ion rotation. Modeling including these factors allowed for differences in Ω to be calculated that precisely mirror the experimental separations. These findings also highlight the promise of pairing high-resolution IMS measurements with theory and computation for improved elucidation of subtle structural differences between ions.
Collapse
Affiliation(s)
- Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nikhil Devanathan
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, IUPUI, Indianapolis, Indiana 46202, United States
| | - Gregory Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Pathak P, Shvartsburg AA. High-Definition Differential Ion Mobility Spectrometry with Structural Isotopic Shifts for Anionic Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319378 DOI: 10.1021/jasms.3c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Differential ion mobility spectrometry (FAIMS) had emerged in the 2000s as a novel tool for postionization separations in conjunction with mass spectrometry (MS). High-definition FAIMS introduced a decade ago has enabled resolution of peptide, lipid, and other molecular isomers with minute structural variations and recently the isotopic shift analyses where the spectral pattern for stable isotopes fingerprints the ion geometry. Those studies, including all isotopic shift analyses, were in the positive mode. Here, we achieve the same high resolution for anions exemplified by phthalic acid isomers. The resolving power and magnitude of isotopic shifts are in line with the metrics for analogous haloaniline cations, establishing high-definition negative-mode FAIMS with structurally specific isotopic shifts. Different shifts (including the new 18O) remain additive and mutually orthogonal, demonstrating the generality of those properties across the elements and charge states. Expanding to common (not halogenated) organic compounds is a key step toward the broad use of FAIMS isotopic shift methodology.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
14
|
Williamson DL, Trimble TK, Nagy G. Hydrogen-Deuterium-Exchange-Based Mass Distribution Shifts in High-Resolution Cyclic Ion Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37098274 DOI: 10.1021/jasms.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mass distribution of ions influences separations in ion mobility spectrometry-mass spectrometry (IMS-MS). Herein, we introduce a method to induce mass distribution shifts for various analytes using hydrogen-deuterium exchange (HDX) immediately prior to ionization using a dual syringe approach. By replacing labile hydrogens on analytes with deuteriums, we were able to differentiate isomers using separations of isotopologues. For each analyte studied, every possible level of deuteration (from undeuterated to fully deuterated) was generated and then separated using cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS). The information gained from such separations (relative arrival times; tRel. values) was found to be orthogonal to conventional IMS-MS separations. Additionally, the observed shifts were linearly additive with increasing deuteration, suggesting that this methodology could be extended to analytes with a larger number of labile hydrogens. For one isomer pair, as few as two deuteriums were able to produce a large enough mass distribution shift to differentiate isomers. In another experiment, we found that the mass distribution shift was large enough to overcome the reduced mass contribution, resulting in a "flipped" arrival time where the heavier deuterated isotopologue arrived before the lighter one. In this work, we present a proof-of-concept demonstration that mass-distribution-based shifts, tRel. values, could potentially act as an added dimension to characterize molecules in IMS-MS. We anticipate, along with future work in this area, that mass-distribution-based shifts could enable the identification of unknown molecules through a database-driven approach in an analogous fashion to collision cross section (CCS) measurements.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Tyson K Trimble
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Pathak P, Shvartsburg AA. High-Definition Ion Mobility/Mass Spectrometry with Structural Isotopic Shifts for Nominally Isobaric Isotopologues. J Phys Chem A 2023; 127:3914-3923. [PMID: 37083428 DOI: 10.1021/acs.jpca.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We had reported the isotopic envelopes in differential IMS (FAIMS) separations depending on the ion structure. However, this new approach to distinguish isomers was constrained by the unit-mass resolution commingling all nominally isobaric isotopologues. Here, we directly couple high-definition FAIMS to ultrahigh-resolution (Orbitrap) MS and employ the resulting platform to explore the FAIMS spectra for isotopic fine structure. The peak shifts therein for isotopologues of halogenated anilines with 15N and 13C (split by 6 mDa) in N2/CO2 buffers dramatically differ, more than for the 13C, 37Cl, or 81Br species apart by 1 or 2 Da. The shifts in FAIMS space upon different elemental isotopic substitutions are orthogonal mutually and to the underlying separations, forming fingerprint multidimensional matrices and 3-D trajectories across gas compositions that redundantly delineate all isomers considered. The interlocking instrumental and methodological upgrades in this work take the structural isotopic shift approach to the next level.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|