1
|
Li M, Tai Q, Shen S, Gao M, Zhang X. Biomimetic Exosome-Sheathed Magnetic Mesoporous Anchor with Modification of Glucose Oxidase for Synergistic Targeting and Starving Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29634-29644. [PMID: 38822821 DOI: 10.1021/acsami.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO2-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells. The MNPs@mSiO2-GOx@EM anchor integrated the unique characteristics of different components. An external decoration of exosome membrane (EM) with high biocompatibility contributed to increased phagocytosis prevention, prolonged circulation, and enhanced recognition and cellular uptake of loaded particles. An internal coated magnetic mesoporous core with rapid responsiveness by the magnetic field guidance and large surface area facilitated the enrichment of nanoparticles at the specific site and provided enough space for modification of glucose oxidase (GOx). The inclusion of GOx in the middle layer accelerated the energy-depletion process within cells, ultimately leading to the starvation and death of target cells with minimal side effects. With these merits, in vitro study manifested that our nanoplatform not only demonstrated an excellent targeting capability of 94.37% ± 1.3% toward homotypic cells but also revealed a remarkably high catalytical ability and cytotoxicity on tumor cells. Assisted by the magnetic guidance, the utilization of our anchor obviously inhibits the tumor growth in vivo. Together, our study is promising to serve as a versatile method for the highly efficient delivery of various target biomolecules to intended locations due to the fungibility of exosome membranes and provide a potential route for the recognition and starvation of tumor cells.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Wang J, Liu X, Li J, Chen W. Digital Circulating Tumor Cells Quantification. Anal Chem 2024; 96:6881-6888. [PMID: 38659346 DOI: 10.1021/acs.analchem.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) are an emerging but vital biomarker for cancer management. An efficient methodology for accurately quantifying CTCs remains challenging due to their rareness. Here, we develop a digital CTC detection strategy using partitioning instead of enrichment to quantify CTCs. By utilizing the characteristics of droplet microfluidics that can rapidly generate a large number of parallel independent reactors, combined with Poisson distribution, we realize the quantification of CTCs in the blood directly. The limit of detection of our digital CTCs quantification assay is five cells per 5 mL of whole blood. By simultaneously detecting multiple genetic mutations, our approach achieves highly sensitive and specific detection of CTCs in peripheral blood from NSCLC patients (AUC = 1). Our digital platform offers a potential approach and strategy for the quantification of CTCs, which could contribute to the advancement of cancer medical management.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Jiang Li
- Gynecology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
3
|
Zheng H, Su N, Yan G, Li M, Chu H, Zhang J, Li B, Zhao J, Wang J, Gao M, Zhang X. Immunomagnetic capture and traceless release of native tumor-derived exosomes from human plasma for exploring interaction with recipient cells by aptamer-functionalized nanoflowers. Anal Chim Acta 2024; 1287:342109. [PMID: 38182386 DOI: 10.1016/j.aca.2023.342109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Ning Su
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mengran Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Bing Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Jiang X, Zhang X, Guo C, Ou L. Antifouling modification for high-performance isolation of circulating tumor cells. Talanta 2024; 266:125048. [PMID: 37579675 DOI: 10.1016/j.talanta.2023.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Circulating tumor cells (CTCs), which shed from solid tumor tissue into blood circulatory system, have attracted wide attention as a biomarker in the early diagnosis and prognosis of cancer. Given their potential significance in clinics, many platforms have been developed to separate CTCs. However, the high-performance isolation of CTCs remains significant challenges including achieving the sensitivity and specificity necessary due to their extreme rarity and severe biofouling in blood, such as billions of background cells and various proteins. With the advancement of CTCs detection technologies in recent years, the highly efficient and highly specific detection platforms for CTCs have gradually been developed, resulting in improving CTC capture efficiency, purity and sensitivity. In this review, we systematically describe the current strategies with surface modifications by utilizing the antifouling property of polymer, peptide, protein and cell membrane for high-performance enrichment of CTCs. To wrap up, we discuss the substantial challenges facing by current technologies and the potential directions for future research and development.
Collapse
Affiliation(s)
- Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Jiang X, Ma B, Sun M, Guo C, Liu Z, Du Y, Wang B, Li N, Chen M, Zhang Y, Shen J, Ou L. Dual Stealth Functional Immuno-magnetic Nanoparticles for High-Performance Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:11885-11891. [PMID: 37348197 DOI: 10.1021/acs.analchem.3c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
As a biomarker of hepatocellular carcinoma (HCC) biopsy, circulating tumor cells (CTCs) are often used in the diagnosis of cancer and treatment guidance. For CTCs detection, immuno-magnetic nanoparticles (IMNs) are one of the most commonly used platforms. However, the nonspecific adsorption of proteins and non-tumor cells weakens the performance of IMNs to capture CTCs. In this work, we developed an IMNs platform which was constructed by a biomimetic protein corona precoating and a polyethylene glycol (PEG) spacer to form the PEG and corona-coated IMNs (IP-CMNs). Due to the dual stealth effect of protein corona precoating and PEG spacer, the nonspecific protein adsorption and cell binding of P-CMNs could reduce by ∼5.5- and ∼5.4-fold, respectively, compared with those of unmodified particles. Furthermore, the PEG spacer could not only reduce the interaction between IP-CMNs and leukocytes but also enhance the capture performance toward tumor cells. By using artificial blood samples, the capture efficiency of IP-CMNs toward rare CTCs was found to be 88.3%, while it was 70.5% by using commercial IMNs. Finally, CTCs were successfully isolated in all HCC patient blood samples (7/7) using IP-CMNs. These results provide insight into the use of the multifunctional nanoplatform as a useful tool for CTCs detection.
Collapse
Affiliation(s)
- Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Boya Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Momo Sun
- Tianjin First Central Hospital, Tianjin 300192, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jie Shen
- Tianjin First Central Hospital, Tianjin 300192, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Guo L, Liu C, Qi M, Cheng L, Wang L, Li C, Dong B. Recent progress of nanostructure-based enrichment of circulating tumor cells and downstream analysis. LAB ON A CHIP 2023; 23:1493-1523. [PMID: 36776104 DOI: 10.1039/d2lc00890d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The isolation and detection of circulating tumor cells (CTCs) play an important role in early cancer diagnosis and prognosis, providing easy access to identify metastatic cells before clinically detectable metastases. In the past 20 years, according to the heterogeneous expression of CTCs on the surface and their special physical properties (size, morphology, electricity, etc.), a series of in vitro enrichment methods of CTCs have been developed based on microfluidic chip technology, nanomaterials and various nanostructures. In recent years, the in vivo detection of CTCs has attracted considerable attention. Photoacoustic flow cytometry and fluorescence flow cytometry were used to detect CTCs in a noninvasive manner. In addition, flexible magnetic wire and indwelling intravascular non-circulating CTCs isolation system were developed for in vivo CTCs study. In the aspect of downstream analysis, gene analysis and drug sensitivity tests of enriched CTCs were developed based on various existing molecular analysis techniques. All of these studies constitute a complete study of CTCs. Although the existing reviews mainly focus on one aspect of capturing CTCs study, a review that includes the in vivo and in vitro capture and downstream analysis study of CTCs is highly needed. This review focuses on not only the classic work and latest research progress in in vitro capture but also includes the in vivo capture and downstream analysis, discussing the advantages and significance of the different research methods and providing new ideas for solving the heterogeneity and rarity of CTCs.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Chang Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Liang Cheng
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
7
|
Yu H, Yang C, Tai Q, Gao M, Zhang X. New Method for Counting and Picking Out Single Circulating Tumor Cells from Microliter-Volume Samples for Tumor Progression Surveillance and Single-Cell Heterogeneity Analysis. Anal Chem 2023; 95:5232-5239. [PMID: 36913664 DOI: 10.1021/acs.analchem.2c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Circulating tumor cells (CTCs) are crucial in tumor progression and metastasis, but the knowledge of their roles grows slowly at single-cell levels. Characterizing the rarity and fragility of CTCs by nature, highly stable and efficient single-CTC sampling methods are still lacking, which impedes the development of single-CTC analysis. Herein, an improved, capillary-based single-cell sampling (SiCS) method, the so-called bubble-glue single-cell sampling (bubble-glue SiCS), is introduced. Benefiting from the characteristic that the cells tend to adhere to air bubbles in the solution, single cells can be sampled with bubbles as low as 20 pL with a self-designed microbubble-volume-controlled system. Benefiting from the excellent maneuverability, single CTCs are sampled directly from 10 μL volume of real blood samples after fluorescent labeling. Meanwhile, over 90% of the CTCs obtained survived and well proliferated after the bubble-glue SiCS process, which showed considerable superiority for downstream single-CTC profiling. Furthermore, a highly metastatic breast cancer model of the 4T1 cell line in vivo was employed for the real blood sample analysis. Increases in CTC numbers were observed during the tumor progression process, and significant heterogeneities among individual CTCs were discovered. In all, we propose a novel avenue for target SiCS and provide an alternative technique route for CTC separation and analysis.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chenjie Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|