1
|
Yan W, Huang Q, Zhou L, Lin X. Direct photoelectrochemical detection of ethanol in complex biological sample. Biosens Bioelectron 2025; 268:116915. [PMID: 39522466 DOI: 10.1016/j.bios.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The development of advanced photoelectrochemical (PEC) technology for the direct detection of ethanol in complex biological sample, has become a hot topic. However, the photo-active nanomaterials, which could generate the photo-induced carriers under illumination, are susceptible to biofouling and interference in complex bio-matrices. In this work, the silica nanochannel-protected TiO2 nanomaterials was reported for the first time that enables the direct sensing of ethanol in real fruits and untreated whole blood. The modification of SNC enhanced the sensitivity of ethanol detection by promoting light absorption, electron-hole separation, and surface reaction rate of photo-active materials. Meanwhile, the biofouling macromolecules and interference signals can be effectively excluded due to the hydrophilic properties, size, and electrostatic exclusion of nanochannels. As a result, without any complex sample pretreatments, the proposed PEC sensor can be directly immersed in complex biological samples for ethanol detection, exhibiting a broad linear range (1.775 μM-20 mM) and a low detection limit (1.2 μM), as well as excellent reproducibility and stability. This work paves a new path for PEC sensors in real biomedical applications.
Collapse
Affiliation(s)
- Wenyan Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinle Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Li X, Jiao L, Li R, Jia X, Chen C, Hu L, Yan D, Zhai Y, Lu X. Biomimetic Electronic Communication of Iodine Doped Single-Atom Fe Site for Highly Active and Stable Dopamine Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405532. [PMID: 39225350 DOI: 10.1002/smll.202405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Rational design of highly active and stable catalysts for dopamine oxidation is still a great challenge. Herein, inspired by the catalytic pocket of natural enzymes, an iodine (I)-doped single Fe-site catalyst (I/FeSANC) is synthesized to mimic the catalytic center of heme enzymes in both geometrical and electronic structures, aiming to enhance dopamine (DA) oxidation. Experimental studies and theoretical calculations show that electronic communication between I and FeN5 effectively modulates the electronic structure of the active site, greatly optimizing the overlap of Fe 3d and O 2p orbitals, thereby enhancing OH adsorption. In addition, the electronic communication induced by iodine doping attenuates the attack of proton hydrogen on the active center, thereby enhancing the stability of I/FeSANC. This work provides new insights into the design of highly active and stable single-atom catalysts and enhances the understanding of catalytic mechanisms for DA oxidation at the atomic scale.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
3
|
Wei X, Xiong H, Zhou Y, Chen X, Yang W. Tracking epithelial-mesenchymal transition in breast cancer cells based on a multiplex electrochemical immunosensor. Biosens Bioelectron 2024; 258:116372. [PMID: 38735081 DOI: 10.1016/j.bios.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.
Collapse
Affiliation(s)
- Xue Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hanzhi Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yunfan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
4
|
Kaewda C, Sriwichai S. Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. BIOSENSORS 2024; 14:349. [PMID: 39056625 PMCID: PMC11275224 DOI: 10.3390/bios14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm-2·µM-1 and 7.27 µA·cm-2·µM-1 in the linear range of 50-500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine.
Collapse
Affiliation(s)
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
5
|
Xing Y, Chen X, Zhao H. Hydroxylase-like Biomimetic Nanozyme Synthesized via a Urea-Mediated MOF Pyrolytic Reconstruction Strategy for Non-" o-Phenol hydroxyl"-Dependent Dopamine Electrochemical Sensing. Anal Chem 2024; 96:6037-6044. [PMID: 38560885 DOI: 10.1021/acs.analchem.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine β-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA β-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA β-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 μM, and its limit of detection was 0.03 μM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.
Collapse
Affiliation(s)
- Yifei Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Gan M, Yao R, Wang B, Li J, Wang N, Choi MMF, Bian W. 3-aminophenylboronic acid modified carbon nitride quantum dots as fluorescent probe for selective detection of dopamine and cell imaging. Methods Appl Fluoresc 2024; 12:025001. [PMID: 38118181 DOI: 10.1088/2050-6120/ad17a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Dopamine (DA) is the most abundant catecholamine neurotransmitter in the brain and plays an extremely essential role in the physiological activities of the living organism. There is a critical need for accurately and efficiently detecting DA levels in organisms in order to reflect physiological states. Carbon nitride quantum dots (C3N4) were, in recent years, used enormously as electrochemical and fluorescence probes for the detection of metal ions, biomarkers and other environmental or food impurities due to their unique advantageous optical and electronic properties. 3-Aminophenylboronic acid (3-APBA) can specifically combine with DA through an aggregation effect, providing an effective DA detection method. In this work, 3-APBA modified carbon nitride quantum dots (3-APBA-CNQDs) were synthesized from urea and sodium citrate. The structure, chemical composition and optical properties of 3-APBA-CNQDs were investigated by XRD, TEM, UV-visible, and FT-IR spectroscopy. The addition of DA could induce fluorescence quenching of 3-APBA-CNQDs possibly through the inner filter effect (IFE). 3-APBA-CNQDs shows better selectivity and sensitivity to DA than other interfering substances. By optimizing the experiment conditions, good linearity was obtained at 0.10-51μM DA with a low detection limit of 22.08 nM. More importantly, 3-APBA-CNQDs have been successfully applied for the detection of DA in human urine and blood samples as well as for bioimaging of intracellular DA. This study provides a promising novel method for the rapid detection of DA in real biological samples.
Collapse
Affiliation(s)
- Mingyu Gan
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Rui Yao
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Baoping Wang
- Lvliang People's Hospital, Lvliang, People's Republic of China
| | - Jiarong Li
- Lvliang People's Hospital, Lvliang, People's Republic of China
| | - Ning Wang
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol BS8 2QG, United Kingdom
| | - Wei Bian
- Department of Basic Medicine, Shanxi Medical University, Jinzhong, People's Republic of China
- Lvliang People's Hospital, Lvliang, People's Republic of China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Ren D, Zhang Y, Li J, Meng W, Tong B, Zhang J, Han C, Dai L. In-situ integrated electrodes of FeM-MIL-88/CP for simultaneous ultra-sensitive detection of dopamine and acetaminophen based on crystal engineering strategy. Anal Chim Acta 2023; 1283:341936. [PMID: 37977775 DOI: 10.1016/j.aca.2023.341936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Designing and exploiting integrated electrodes is the current inevitable trend to realize the sustainable development of electrochemical sensors. In this work, a series of integrated electrodes prepared by in situ growing the second metal ion-modulated FeM-MIL-88 (M = Mn, Co and Ni) on carbon paper (CP) (FeM-MIL-88/CP) were constructed as the electrochemical sensing platforms for the simultaneous detection of dopamine (DA) and acetaminophen (AC). Among them, FeMn-MIL-88/CP exhibited the best sensing behaviors and achieved the trace detection for DA and AC owing to synergistic catalysis between Fe3+, Mn2+ and CP. The electrochemical sensor based on FeMn-MIL-88/CP showed ultra-high sensitivities of 2.85 and 7.46 μA μM-1 cm-2 and extremely low detection limits of 0.082 and 0.015 μM for DA and AC, respectively. The FeMn-MIL-88/CP also exhibited outstanding anti-interference ability, repeatability and stability, and satisfactory results were also obtained in the detection of actual samples. The mechanism of Mn2+ modulation on the electrocatalytic activity of FeMn-MIL-88/CP towards DA and AC was revealed for the first time through the density functional theory (DFT) calculations. Good adsorption energy and rapid electron transfer worked synergistically to improve the sensing performances of DA and AC. This work not only provided a high-performance integrated electrode for the sensing field, but also demonstrated the influencing factors of electrochemical sensing at the molecular levels, laying a theoretical foundation for the sustainable development of subsequent electrochemical sensing.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Dongmei Ren
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Junguo Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, 063009, China
| | - Wei Meng
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Boran Tong
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Chao Han
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Lei Dai
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| |
Collapse
|