1
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024:100853. [PMID: 39383946 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Attanayake K, Mahmud S, Banerjee C, Sharif D, Rahman M, Majuta S, DeBastiani A, Sultana MN, Foroushani SH, Li C, Li P, Valentine SJ. Examining DNA Structures with In-droplet Hydrogen/Deuterium Exchange Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 499:117231. [PMID: 38854816 PMCID: PMC11156224 DOI: 10.1016/j.ijms.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) combined with hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been utilized to characterize different solution-phase DNA conformers including DNA G-quadruplex topologies as well as triplex DNA and duplex DNA. In general, G-quadruplex DNA shows a wide range of protection of hydrogens extending from ~12% to ~21% deuterium incorporation. Additionally, the DNA sequences selected to represent parallel, antiparallel, and hybrid G-quadruplex topologies exhibit slight differences in deuterium uptake levels which appear to loosely relate to overall conformer stability. Notably, the exchange level for one of the hybrid sequence sub topologies of G-quadruplex DNA (24 TTG) is significantly different (compared with the others studied here) despite the DNA sequences being highly comparable. For the quadruplex-forming sequences, correlation analysis suggests protection of base hydrogens involved in tetrad hydrogen bonding. For duplex DNA ~19% deuterium incorporation is observed while only ~16% is observed for triplex DNA. This increased protection of hydrogens may be due to the added backbone scaffolding and Hoogsteen base pairing of the latter species. These experiments lay the groundwork for future studies aimed at determining the structural source of this protection as well as the applicability of the approach for ascertaining different oligonucleotide folds, co-existing conformations, and/or overall conformer flexibility.
Collapse
Affiliation(s)
- Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Sultan Mahmud
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chandrima Banerjee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Mst Nigar Sultana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Kish M, Ivory DP, Phillips JJ. Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J Am Chem Soc 2024; 146:298-307. [PMID: 38158228 PMCID: PMC10786028 DOI: 10.1021/jacs.3c08934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
It remains a major challenge to ascertain the specific structurally dynamic changes that underpin protein functional switching. There is a growing need in molecular biology and drug discovery to complement structural models with the ability to determine the dynamic structural changes that occur as these proteins are regulated and function. The archetypal allosteric enzyme glycogen phosphorylase is a clinical target of great interest to treat type II diabetes and metastatic cancers. Here, we developed a time-resolved nonequilibrium millisecond hydrogen/deuterium-exchange mass spectrometry (HDX-MS) approach capable of precisely locating dynamic structural changes during allosteric activation and inhibition of glycogen phosphorylase. We resolved obligate transient changes in the localized structure that are absent when directly comparing active/inactive states of the enzyme and show that they are common to allosteric activation by AMP and inhibition by caffeine, operating at different sites. This indicates that opposing allosteric regulation by inhibitor and activator ligands is mediated by pathways that intersect with a common structurally dynamic motif. This mass spectrometry approach uniquely stands to discover local transient structural dynamics and could be used broadly to identify features that influence the structural transitions of proteins.
Collapse
Affiliation(s)
- Monika Kish
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Dylan P. Ivory
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Jonathan J. Phillips
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
- Alan
Turing Institute, British Library, London NW1 2DB, U.K.
| |
Collapse
|
4
|
Dong L, Chen S, Piatkov K, Wei D, Qian MG. Quantifying LAGA mutated mouse IgG2a monoclonal antibody with a rapid pepsin digestion enabled immunoaffinity LC/MS/MS assay. MAbs 2024; 16:2379903. [PMID: 39077932 PMCID: PMC11290748 DOI: 10.1080/19420862.2024.2379903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
A sensitive and specific bioanalytical method was required to measure the exposure of a LAGA-mutated surrogate mouse IgG2a monoclonal antibody in mouse plasma, but the lack of highly specific reagents for the LAGA mutant hindered the development of a ligand-binding assay. Equally problematic is that no sensitive unique tryptic peptides suitable for quantitative mass spectrometric analysis could be identified in the mIgG2a complementarity-determining regions. To overcome these challenges, a trypsin alternative pepsin, an aspartic protease, was systematically investigated for its use in digesting the mutated mIgG2a antibody to allow generation of signature peptides for the bioanalytical quantification purpose. After a series of evaluations, a rapid one-hour pepsin digestion protocol was established for the mutated Fc backbone. Consequently, a new pepsin digestion-based liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was successfully developed to support the mouse pharmacokinetic (PK) sample analysis. In brief, robust and reproducible C-terminal cleavage of both leucine and phenylalanine near the double mutation site of the mutated mIgG2a was accomplished at pH ≤2 and 37°C. Combined with a commercially available rat anti-mIgG2a heavy-chain antibody, the established immunoaffinity LC/MS/MS assay achieved a limit of quantitation of 20 ng/mL in the dynamic range of interest with satisfactory assay precision and accuracy. The successful implementation of this novel approach in discovery PK studies eliminates the need for tedious and costly generation of specific immunocapturing reagents for the LAGA mutants. The approach should be widely applicable for developing popular LAGA mutant-based biological therapeutics.
Collapse
Affiliation(s)
- Linlin Dong
- Department of Drug Metabolism, Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Susan Chen
- Department of Drug Metabolism, Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Konstantin Piatkov
- Department of Drug Metabolism, Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Dong Wei
- Department of Drug Metabolism, Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Mark G. Qian
- Department of Drug Metabolism, Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| |
Collapse
|
5
|
Kish M, Subramanian S, Smith V, Lethbridge N, Cole L, Vollmer F, Bond NJ, Phillips JJ. Allosteric Regulation of Glycogen Phosphorylase by Order/Disorder Transition of the 250' and 280s Loops. Biochemistry 2023; 62:1360-1368. [PMID: 36989206 PMCID: PMC10116597 DOI: 10.1021/acs.biochem.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Allostery is a fundamental mechanism of protein activation, yet the precise dynamic changes that underlie functional regulation of allosteric enzymes, such as glycogen phosphorylase (GlyP), remain poorly understood. Despite being the first allosteric enzyme described, its structural regulation is still a challenging problem: the key regulatory loops of the GlyP active site (250' and 280s) are weakly stable and often missing density or have large b-factors in structural models. This led to the longstanding hypothesis that GlyP regulation is achieved through gating of the active site by (dis)order transitions, as first proposed by Barford and Johnson. However, testing this requires a quantitative measurement of weakly stable local structure which, to date, has been technically challenging in such a large protein. Hydrogen-deuterium-exchange mass spectrometry (HDX-MS) is a powerful tool for studying protein dynamics, and millisecond HDX-MS has the ability to measure site-localized stability differences in weakly stable structures, making it particularly valuable for investigating allosteric regulation in GlyP. Here, we used millisecond HDX-MS to measure the local structural perturbations of glycogen phosphorylase b (GlyPb), the phosphorylated active form (GlyPa), and the inhibited glucose-6 phosphate complex (GlyPb:G6P) at near-amino acid resolution. Our results support the Barford and Johnson hypothesis for GlyP regulation by providing insight into the dynamic changes of the key regulatory loops.
Collapse
Affiliation(s)
- Monika Kish
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
| | - Sivaraman Subramanian
- Living Systems Institute, Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 6QD, U.K
| | | | | | - Lindsay Cole
- Applied Photophysics Ltd, Leatherhead, KT227BA, U.K
| | - Frank Vollmer
- Living Systems Institute, Department of Physics, University of Exeter, Stocker Road, Exeter, EX4 6QD, U.K
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
- Alan Turing Institute, British Library, London, NW1 2DB, U.K
| |
Collapse
|