1
|
Kobelt T, Lippmann M, Nitschke A, Kielhorn L, Zimmermann S. An open source isolated data acquisition with trigger pulse generation for ion mobility spectrometry. HARDWAREX 2024; 20:e00600. [PMID: 39553919 PMCID: PMC11565032 DOI: 10.1016/j.ohx.2024.e00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Ion mobility spectrometers (IMS) are used in a wide variety of applications, including trace gas detection in safety and security applications, but also in more analytical applications, e.g., in medicine or food quality monitoring. Consequently, IMS are often coupled with other separation techniques and laboratory equipment, requiring synchronization between the external equipment and the IMS electronics. In addition, IMS and the associated electronics are becoming increasingly complex due to ongoing instrumental developments. In this work, we present an open source data acquisition hardware tailored to the requirements of advanced IMS, but also applicable to other applications. The data acquisition hardware provides trigger pulses for synchronized operation of the IMS ion gate or external devices. In addition, the data acquisition hardware allows for parallel digitalization using two isolated 16-bit analog-to-digital converters (ADC) with up to 250 kilosamples per second. The galvanically isolated trigger input ensures a synchronized start of the IMS measurements, particularly when connecting external instrumentation such as a gas chromatograph. Furthermore, due to the isolated ADCs, the hardware allows great flexibility in defining the ground potential of the instrument setup.
Collapse
Affiliation(s)
- Tim Kobelt
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167 Hannover, Germany
| | - Martin Lippmann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167 Hannover, Germany
| | - Alexander Nitschke
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167 Hannover, Germany
| | - Lou Kielhorn
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, 30167 Hannover, Germany
| |
Collapse
|
2
|
Nitschke A, Hitzemann M, Winkelholz J, Kirk AT, Lippmann M, Thoben C, Wittwer JA, Zimmermann S. A hyper-fast gas chromatograph coupled to an ion mobility spectrometer with high repetition rate and flow-optimized ion source to resolve the short chromatographic peaks. J Chromatogr A 2024; 1736:465376. [PMID: 39277980 DOI: 10.1016/j.chroma.2024.465376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
By combining the high selectivity of a gas chromatograph (GC) with the high sensitivity and decent selectivity of an ion mobility spectrometer (IMS), GC-IMS have become increasingly popular in many applications. However, most GC suffer from long analysis times. In contrast, an hyper-fast GC allows for extremely fast analysis in the tens of seconds while reaching comparably high resolution. In turn, coupling such hyper-fast GC with IMS requires sufficiently high repetition rate of recording full IMS spectra to resolve the short GC peaks. Therefore, we present a drift tube IMS with 100 Hz repetition rate. Key is a small effective detector volume combined with short drift length. Therefore, the ion source of the IMS combines a small reaction region with an extended field-switching ion shutter and optimized gas flows. To resolve even the shortest GC peaks with a full width at half maximum of 100 ms, a short drift length of just 41 mm was used, achieving a measurement time of 10 ms per spectrum and hence ten data points across the shortest GC peak. To avoid condensation of the sample, the entire IMS was heated isothermally to 120 °C. Despite short drift times and high temperatures, the IMS still reaches high resolving power of Rp = 60. The hyper-fast GC-IMS reaches low detection limits in the low ppbV range. For demonstration, ketone mixes and three different hop varieties were analyzed in <30 s.
Collapse
Affiliation(s)
- Alexander Nitschke
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany.
| | - Moritz Hitzemann
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Jonas Winkelholz
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Ansgar T Kirk
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Martin Lippmann
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Christian Thoben
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Jan A Wittwer
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| | - Stefan Zimmermann
- Leibniz Universität Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Hannover 30167, Germany
| |
Collapse
|
3
|
Anttalainen O, Karjalainen M, Lattouf E, Hecht O, Vanninen P, Hakulinen H, Kotiaho T, Thomas C, Eiceman G. Time-Resolved Ion Mobility Spectrometry with a Stop Flow Confined Volume Reaction Region. Anal Chem 2024; 96:10182-10192. [PMID: 38857882 PMCID: PMC11209659 DOI: 10.1021/acs.analchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
An ion source concept is described where the sample flow is stopped in a confined volume of an ion mobility spectrometer creating time-dependent patterns of ion patterns of signal intensities for ions from mixtures of volatile organic compounds and improved signal-to-noise rate compared to conventional unidirectional drift gas flow. Hydrated protons from a corona discharge were introduced continuously into the confined volume with the sample in air at ambient pressure, and product ions were extracted continuously using an electric field for subsequent mobility analysis. Ion signal intensities for protonated monomers and proton bound dimers were measured and computationally extracted using mobilities from mobility spectra and exhibited distinct times of appearance over 30 s or more after sample injection. Models, and experimental findings with a ternary mixture, suggest that the separation of vapors as ions over time was consistent with differences in the reaction rate for reactions between primary ions from hydrated protons and constituents and from cross-reactions that follow the initial step of ionization. The findings suggest that the concept of stopped flow, introduced here for the first time, may provide a method for the temporal separation of atmospheric pressure ions. This separation relies on ion kinetics and does not require chromatographic technology.
Collapse
Affiliation(s)
- Osmo Anttalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Markus Karjalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elie Lattouf
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Oliver Hecht
- Airsense
Analytics GmbH, Hagenower
Straße 73, Schwerin 19061, Germany
| | - Paula Vanninen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Hakulinen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O.Box 55, Helsinki FIN-00014, Finland
| | - Charles Thomas
- Department
of Chemistry, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Gary Eiceman
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- New
Mexico
State University, 1175 N Horseshoe Dr., Las Cruces, New Mexico 88003, United States
| |
Collapse
|
4
|
Williams OHL, Rusli O, Ezzedinloo L, Dodgen TM, Clegg JK, Rijs NJ. Automated Structural Activity Screening of β-Diketonate Assemblies with High-Throughput Ion Mobility-Mass Spectrometry. Angew Chem Int Ed Engl 2024; 63:e202313892. [PMID: 38012094 DOI: 10.1002/anie.202313892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Embracing complexity in design, metallo-supramolecular self-assembly presents an opportunity for fabricating materials of economic significance. The array of accessible supramolecules is alluring, along with favourable energy requirements. Implementation is hampered by an inability to efficiently characterise complex mixtures. The stoichiometry, size, shape, guest binding properties and reactivity of individual components and combinations thereof are inherently challenging to resolve. A large combinatorial library of four transition metals (Fe, Cu, Ni and Zn), and six β-diketonate ligands at different molar ratios and pH was robotically prepared and directly analysed over multiple timepoints with electrospray ionisation travelling wave ion mobility-mass spectrometry. The dataset was parsed for self-assembling activity without first attempting to structurally assign individual species. Self-assembling systems were readily categorised without manual data-handling, allowing efficient screening of self-assembly activity. This workflow clarifies solution phase supramolecular assembly processes without manual, bottom-up processing. The complex behaviour of the self-assembling systems was reduced to simpler qualities, which could be automatically processed.
Collapse
Affiliation(s)
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lida Ezzedinloo
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Tyren M Dodgen
- Waters Corporation Australia, Rydalmere, NSW, 2116, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|