1
|
Wu S, Zhang S, Liu CM, Fernie AR, Yan S. Recent Advances in Mass Spectrometry-Based Protein Interactome Studies. Mol Cell Proteomics 2024; 24:100887. [PMID: 39608603 DOI: 10.1016/j.mcpro.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
The foundation of all biological processes is the network of diverse and dynamic protein interactions with other molecules in cells known as the interactome. Understanding the interactome is crucial for elucidating molecular mechanisms but has been a longstanding challenge. Recent developments in mass spectrometry (MS)-based techniques, including affinity purification, proximity labeling, cross-linking, and co-fractionation mass spectrometry (MS), have significantly enhanced our abilities to study the interactome. They do so by identifying and quantifying protein interactions yielding profound insights into protein organizations and functions. This review summarizes recent advances in MS-based interactomics, focusing on the development of techniques that capture protein-protein, protein-metabolite, and protein-nucleic acid interactions. Additionally, we discuss how integrated MS-based approaches have been applied to diverse biological samples, focusing on significant discoveries that have leveraged our understanding of cellular functions. Finally, we highlight state-of-the-art bioinformatic approaches for predictions of interactome and complex modeling, as well as strategies for combining experimental interactome data with computation methods, thereby enhancing the ability of MS-based techniques to identify protein interactomes. Indeed, advances in MS technologies and their integrations with computational biology provide new directions and avenues for interactome research, leveraging new insights into mechanisms that govern the molecular architecture of living cells and, thereby, our comprehension of biological processes.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 PMCID: PMC11693245 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| |
Collapse
|
3
|
Wang J, Liu J, Huang R, Chu T, Tang Q, Chen X. Proteomic Profiling of Messenger Ribonucleoproteins in Mouse Tissues Based on Formaldehyde Cross-Linking. J Proteome Res 2024; 23:1370-1378. [PMID: 38472149 DOI: 10.1021/acs.jproteome.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.
Collapse
Affiliation(s)
- Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Rongbing Huang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianyu Chu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|