1
|
Jiang M, Wang M, Lai W, Hong C, Song X, Chen S. Smart modulation by bifunctional probes PNAI@Co 3O 4/Au NPs of the light/electric response of Au-Ag NCs to realize the dual-channel precise detection of AOH. Food Chem 2025; 463:141370. [PMID: 39316911 DOI: 10.1016/j.foodchem.2024.141370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Mycotoxin contamination currently poses a significant concern and presents a major challenge to global food safety management. In this research, gold‑silver nanoclusters (Au-AgNCs) were utilized as platforms for electrogenerated chemiluminescence (ECL) and electrochemical (EC) responses, while polyaniline-coated cobalt tetraoxide and gold (PANI@Co3O4/AuNPs) served as bifunctional probes with intelligently modulated light/electric signals to develop a dual mode adaptor sensor for sensitive detection of alternariol (AOH). The sensor's benefits are evident in three areas:(1) Bandgap modulation allows Au-Ag to exhibit enhanced light/electric response;(2) PANI@Co3O4/AuNPs exhibit both ECL quenching effects and the capability to activate KHSO5, along with improved electrical conductivity, which collectively improves the sensor's detection performance;(3) The dual-channel signal outputs significantly reduce the risk of false detections. Testing results indicated that the ECL and EC sensors performed exceptionally well across AOH concentration ranges of 0.001-100 ng/mL and 0.01-1000 ng/mL, with detection limit of 0.803 pg/mL and 0.378 pg/mL, respectively.
Collapse
Affiliation(s)
- Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xuetong Song
- Department of Geography and Tourism, College of Science, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Siyu Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Bao C, Deng L, Huang F, Yang M, Li X. Signal amplification strategies in photoelectrochemical sensing of carcinoembryonic antigen. Biosens Bioelectron 2024; 262:116543. [PMID: 38963951 DOI: 10.1016/j.bios.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.
Collapse
Affiliation(s)
- Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| |
Collapse
|
3
|
Wu C, Hao Z, Deng H, Jiang Y, Yuan R, Yuan Y. AgI Precipitation Induced Polarity Reversal with Formation of Z-Type Heterojunction for Photoelectrochemical Sensing. Anal Chem 2024; 96:14759-14765. [PMID: 39234645 DOI: 10.1021/acs.analchem.4c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Regulating photocurrent polarity is highly attractive for fabricating photoelectrochemical (PEC) biosensors with improved sensitivity and accuracy in practical samples. Here, a new approach that adopts the in situ generated AgI precipitate and AgNCs to reversal Bi2WO6 polarity with formation of Z-type heterojunction was proposed for the first time, which coupled with a high-efficient target conversion strategy of exonuclease III (Exo III)-assisted triple recycling amplification for sensing miRNA-21. The target-related DNA nanospheres in situ generated on electrode with loading of plentiful AgI and AgNCs not only endowed the photocurrent of Bi2WO6 switching from the anodic to cathodic one due to the changes in the electron transfer pathway but also formed AgI/AgNCs/Au/Bi2WO6 Z-type heterojunction to improve the photoelectric conversion efficiency for acquiring extremely enhanced PEC signal, thereby significantly avoiding the problem of high background signal derived from traditional unidirectional increasing/decreasing response and false-positive/false-negative. Experimental data showed that the PEC biosensor had a low detection limit down to 0.085 fM, providing a new polarity-reversal mechanism and expected application in diverse fields, including biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Chou Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Zhipeng Hao
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Hanmei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
4
|
Jin Y, Yu W, Chen L, Yuan R, Liu J, Fu Y, Chai Y. Dual-sensitized heterojunction Ag 2S/ZnS/NiS composites with entire visible-light region absorption for ultrasensitive photoelectrochemical detection of tobramycin. Biosens Bioelectron 2024; 260:116459. [PMID: 38838575 DOI: 10.1016/j.bios.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
In this study, an ultrasensitive photoelectrochemical (PEC) aptasensor based on dual-sensitized heterojunction Ag2S/ZnS/NiS composites as a signal probe was proposed for the detection of tobramycin (TOB) by combining a cascaded quadratic signal amplification strategy. Specifically, compared to the limited visible light-harvesting capability of single sensitized composites, Ag2S/ZnS/NiS composites with p-n and n-n heterojunction could greatly improve the light energy utilization to tremendously strengthen the optical absorption in the entire visible-light region. Moreover, dual-sensitized heterojunction could effectively hinder the rapid recombination of photoelectrons and holes (carriers) to obtain a good photocurrent for improving the sensitivity of the aptasensor. Furthermore, a cascaded quadratic signal amplification strategy was applied to convert trace target TOB into plentiful gold nanoclusters (Au NCs) labelled double-stranded DNA for the construction of PEC aptasensor, with a broad linear detection range from 0.01 to 100 ng mL-1 and a low detection limit of 3.38 pg mL-1. Importantly, this study provided a versatile and sensitive PEC biosensing platform for TOB analysis, and demonstrated its successful application for TOB detection in milk samples. This protocol provides a novel dual-sensitized heterojunction composites to develop a highly efficient and harmfulless PEC aptasensor, which is expected to be used in food safety, environmental monitoring and other areas.
Collapse
Affiliation(s)
- Yushuang Jin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wanqing Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Li Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiali Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
5
|
Jian H, Wang X, Li J, Liu L, Zeng H, Li P, Tang D, Tang J. Versatile Bovine Serum Albumin as Ingenious Electron Operator-Enhanced Photoelectrochemical Biosensing for Ultrasensitive Detection of miRNA. Anal Chem 2024; 96:14660-14668. [PMID: 39180758 DOI: 10.1021/acs.analchem.4c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Bovine serum albumin (BSA) has been widely used in biosensors as a blocking agent. Herein, conformist BSA was first exploited as an ingenious operator to enhance the photocurrent response of (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(4-(bis(4-methoxyphenyl)amino)phenyl)acrylonitrile) (TPDCN)-based photoelectrochemical (PEC) platform via manipulating the electron transfer process of the detection system. Concretely, the presence of target molecules triggered catalytic hairpin assembly reaction and subsequently powered terminal deoxynucleotidyl transferase-mediated signal amplification to produce the AgNP@BSA-DNA dendrimer nanostructure. After being treated with HNO3, a large amount of BSA could be released from the dendrimer nanostructure. When they were transferred to the TPDCN-based PEC platform, the photocurrent response of the biosensor was largely enhanced because BSA can manipulate the electrons of TPDCN via a well-matched energy level to form a new electron transfer track. Meanwhile, tryptophan (Trp) in BSA could be oxidized to quinone Trp-O under photoirradiation, which can facilitate the oxidation of ascorbate and generate more H+ to promote the migration of photogenerated electrons. As a result, the proposed PEC biosensor exhibits excellent analytical performance for detection of miRNA-21 (as a model target) over a wide linear range of 0.01 to 10,000 pM with detection limit as low as 4.7 fM. Overall, this strategy provides a new perspective on constructing efficient PEC biosensors, which expands the potential applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Huixin Jian
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xiaoman Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Liping Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Haisen Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Ping Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
6
|
Lin X, Cai F, Lin J, Zhang K, Lin Y. Digital multimeter-based portable photoelectrochemical immunoassay with enzyme-catalyzed precipitation for screening carbohydrate antigen 125. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4619-4625. [PMID: 38920338 DOI: 10.1039/d4ay00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The degree of the carbohydrate antigen 125 (CA-125) level in serum is positively correlated with the severity of ovarian cancer. In this study, a facile photoelectrochemical (PEC) immunoassay was devised for sensitive detection of CA-125 employing enzyme-catalyzed precipitation to weaken the photocurrent of hollow porous In2O3 nanotubes incorporating CdS nanoparticles. Upon the addition of the target analyte, horseradish peroxidase (HRP) enriches as a result of the formation of the sandwich immunocomplex, which can catalyze the conversion of 4-chloro1-naphthol (4-CN) to benzo-4-chlorohexadienone (4-CD) employing H2O2 as a cofactor. The as-produced insoluble precipitate acts as an obstacle to hinder the absorption of visible light by photoactive materials, thereby resulting in a decrease in photocurrent. Moreover, the weakened signal can be easily read out by a digital multimeter (DMM), advancing the convenience of the detection system. The preliminary analysis data indicate that the PEC immunoassay shows an efficient response to CA-125 levels ranging from 0.1 to 100 U mL-1 with a limit of detection (LOD) as low as 0.046 U mL-1 (S/N = 3). Most importantly, the proposed portable method has shown satisfactory performance in terms of selectivity, reproducibility, stability, and analysis in complex biological matrices.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Fan Cai
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, PR China
| | - Jia Lin
- The Academy of Rehabilitation Industry, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, Fujian, PR China.
| | - Kunmu Zhang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350000, Fujian, PR China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, College of Integrative Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, Fujian, PR China.
| |
Collapse
|
7
|
Chen Y, Gu W, Zhu C, Hu L. Recent Advances in Photoelectrochemical Sensing for Food Safety. Anal Chem 2024; 96:8855-8867. [PMID: 38775631 DOI: 10.1021/acs.analchem.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Yuanxing Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
8
|
Wen X, Yang X, Ge Z, Ma H, Wang R, Tian F, Teng P, Gao S, Li K, Zhang B, Sivanathan S. Self-powered optical fiber biosensor integrated with enzymes for non-invasive glucose sensing. Biosens Bioelectron 2024; 253:116191. [PMID: 38460209 DOI: 10.1016/j.bios.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 μM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.
Collapse
Affiliation(s)
- Xingyue Wen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinghua Yang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Zhongxuan Ge
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Hongyu Ma
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Wang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Fengjun Tian
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Pingping Teng
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shuai Gao
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Kang Li
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK
| | - Bo Zhang
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK; Henan Academy of Special Optics Ltd., Xinxiang, 453000, China
| | - Sivagunalan Sivanathan
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK
| |
Collapse
|
9
|
Li X, Chen G, Li Y, Wang Y, Huang W, Lai G. Multiplex Signal Transduction and Output at Single Recognition Interface of Multiplexed Photoelectrochemical Sensors. Anal Chem 2024; 96:8147-8159. [PMID: 38568863 DOI: 10.1021/acs.analchem.3c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guixiang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yishuang Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
10
|
Xu W, Zhang X, Liu S, Jiang F, Li Y, Xu Z, Li Y. Ternary BiOI/Bi 2S 3/Au Nanosheet Arrays as a Photoelectrochemical Signal Converter for the Detection of Cardiac Troponin I. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7060-7066. [PMID: 38513212 DOI: 10.1021/acs.langmuir.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nanosheet arrays with stable signal output have become promising photoactive materials for photoelectrochemical (PEC) immunosensors. However, an essential concern is the facile recombination of carriers in one-component nanoarrays, which cannot be readily prevented, ultimately resulting in weak photocurrent signals. In this study, an immunosensor using gold nanoparticle-anchored BiOI/Bi2S3 nanosheet arrays (BiOI/Bi2S3/Au) as a signal converter was fabricated for sensitive detection of cardiac troponin I (cTnI). The ternary nanosheet arrays were prepared by a simple method in which Bi2S3 was well-coated on the BiOI surface by in situ growth, whereas the addition of Au further improved the photoelectric conversion efficiency and could link more antibodies. The three-dimensional (3D) ordered sheet-like network array structure and BiOI/Bi2S3/Au ternary nanosheet arrays showed stable and high photoelectric signal output and no significant difference in signals across different batches under visible light excitation. The fabricated immunosensor has a sensitive response to the target detection marker cTnI in a wide linear range of 500 fg/mL to 50 ng/mL, and the detection limit was 32 fg/mL, demonstrating good stability and selectivity. This work not only shows the great application potential of ternary heterojunction arrays in the field of PEC immunosensors but also provides a useful exploration for improving the stability of immunosensors.
Collapse
Affiliation(s)
- Weixuan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xuelin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
11
|
Xu X, Lu Y, Liu D, Zhang L, Zheng L, Nie G. Highly efficient photoelectrochemical aptasensor based on CdS/CdTe QDs co-sensitized TiO 2 nanoparticles designed for thrombin detection. Mikrochim Acta 2024; 191:216. [PMID: 38517549 DOI: 10.1007/s00604-024-06279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/24/2024]
Abstract
A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.
Collapse
Affiliation(s)
- Xuejiao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Lu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
12
|
Bo Y, Li L, Miao P, Li C, Chang J, Zhang Y, Lv Y, Yang X, Zhang J, Yan M. 2D Z-scheme ZnIn 2S 4/g-C 3N 4 heterojunction based on photoelectrochemical immunosensor with enhanced carrier separation for sensitive detection of CEA. Biosens Bioelectron 2024; 247:115926. [PMID: 38147720 DOI: 10.1016/j.bios.2023.115926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Semiconducting materials based on photoelectrochemical (PEC) sensors have been widely utilized for detection. Meanwhile, the sensitivity of the PEC sensor was limited by low-efficiency carrier separation. Thus, a novel sandwich-type PEC bioimmunosensing based on 2D Z-scheme ZnIn2S4/g-C3N4 heterojunction as a photosensitive material and BiVO4 as a photoquencher was designed for the sensitive detection of carcinoembryonic antigen (CEA). Firstly, the 2D ZnIn2S4/g-C3N4 structure provided a multitude of activated sites which facilitated the loading of the capture antibody (Ab1). Secondly, the Z-scheme heterojunction had a high redox capacity while promoting the rapid separation and migration of photogenerated electron-hole pairs (e-/h+). Thus it was able to consume more electron donors to a certain extent, resulting in a higher initial photocurrent. In addition, BiVO4 with large spatial potential resistance was introduced for the first time to realize signal amplification. BiVO4 could not only compete with substrate materials for electron donors, but also effectively prevent electron donors from contacting the substrate, further reducing the photocurrent signal. Under optimized conditions, the sensor had a favorable detection range (0.0001-100 ng/mL) to CEA and a low detection limit of 0.03 pg/mL. With high specificity, excellent stability, and remarkable reproducibility, this sensor provided a new perspective for constructing accurate and convenient PEC immunosensor for bioanalysis and early disease diagnosisdisease diagnosis.
Collapse
Affiliation(s)
- Yiran Bo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Linrong Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chengfang Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanfeng Lv
- Department of Colorectal and Anal Surgery, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Zhejiang Starry Pharmaceutical Co., Ltd. Taizhou, 317300, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
13
|
Xin Y, Wang Z, Yao H, Dou X, Zhang R, Wang H, Miao Y, Zhang Z. Oxygen Vacancies-Induced Antifouling Photoelectrochemical Aptasensor for Highly Sensitive and Selective Determination of α-Fetoprotein. Anal Chem 2024; 96:3645-3654. [PMID: 38356334 DOI: 10.1021/acs.analchem.3c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Accurate measurement of cancer markers in urine is a convenient method for tumor monitoring. However, the concentration of cancer markers in urine is so low that it is difficult to achieve their measurement. Photoelectrochemical (PEC) sensors are a promising technology to realize the detection of trace cancer markers due to their high sensitivity. Currently, the interference of nonspecific biomolecules in urine is the main reason affecting the high sensitivity and selectivity of PEC sensors in detecting cancer markers. In this work, a strategy of oxygen vacancy (OV) modulation is proposed to construct a fouling-resistant PEC aptamer sensing platform for the detection of α-fetoprotein (AFP), a liver cancer marker. The introduction of OVs induces the formation of intermediate localized states in the photoelectric material, which not only facilitates the separation of photogenerated carriers but also leads to the redshift of the light absorption edge. More importantly, OVs with positive electrical properties can be employed to modify the antifouling layer (C-PEG) with negatively charged groups through an electrostatic interaction. The synergistic effect of OVs, antifouling layer, and aptamer resulted in a TiO2/OVs/C-PEG-based PEC sensor achieves a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.3 pg/mL for AFP. In addition, the sensor successfully realized the determination of AFP in urine samples and accurately differentiated between normal people and liver cancer patients in the early and advanced stages. This project is of great significance in advancing the application of photoelectrochemical bioanalytical technology to achieve the detection of cancer markers in urine by investigating the construction of an OVs-regulated fouling-resistant sensing interface.
Collapse
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Zhuo Wang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, China
| | - Xiaoru Dou
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Ruiting Zhang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Huiqing Wang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
14
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
15
|
Wang L, Liu J, Dai X, Zhou L, Bu Y, Zhao G. A carbon quantum layer modified BiVO 4 photoelectrochemical aptamer biosensor for ultra-sensitive cTnI biomarker detection based on the interface nephelauxetic effect and heterojunction assistance. J Mater Chem B 2023; 11:9676-9684. [PMID: 37782550 DOI: 10.1039/d3tb01690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The sensitivity and specificity of a semiconductor photoelectrochemical (PEC) aptamer biosensor are determined by the separation and transport of the photoinduced carriers as well as aptamer probe immobilization. In this study, an in situ thermal transformation organic polymer strategy was employed to produce an ∼2.5 nm carbon quantum layer on the surface of the BiVO4(BVO) photoanode. Experimental tests and theoretical calculations have revealed that this carbon quantum layer-coated BVO(C@BVO) heterostructure could generate surface charge depletion regions through an interface nephelauxetic effect. These charge depletion regions facilitated the efficient immobilization of DNA aptamer probes of the acute myocardial infarction biomarker cardiac troponin I (cTnI), while showing almost no immobilization capability on a pure-phase C quantum layer or BVO crystals. Simultaneously, the formation of the C@BVO heterostructure also enhanced the directional transport of photo-generated holes from BVO to the C quantum layer. Due to the above reasons, the C@BVO PEC aptamer biosensor achieved a linear detection range for cTnI from 10-14 g L-1 to 10-10 g L-1, with a record detection limit (LOD) of ∼0.33 × 10-14 g L-1 (N > 3). Meanwhile, the biosensor also demonstrated well the detection reproducibility and specificity for cTnI detection. Therefore, the strategy of using a carbon quantum layer-coated PEC electrode shows good potential to develop PEC biosensors with high sensitivity, specificity, and robustness.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Jie Liu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Linfu Zhou
- School of Medicine, Northwest University, Xi'an 710068, China
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Gang Zhao
- School of Medicine, Northwest University, Xi'an 710068, China
| |
Collapse
|