1
|
Peng Y, Meng T, Yao B, Sheng M, Wang Q, Jin Z, Zhang T, Huang J, Yang X. Cu 3(HITP) 2 with peroxidase- and ascorbic acid oxidase-like catalytic activity for fluorescence/chemiluminescence sensing of ascorbic acid. Talanta 2024; 282:126988. [PMID: 39395307 DOI: 10.1016/j.talanta.2024.126988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Nanomaterials with intrinsic enzyme mimicking activity have achieved widespread application. However, developing novel nanomaterials with multienzyme mimicry activity remains challenging. Herein, Cu3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with ascorbic acid oxidase (AAO)- and peroxidase (POD)-like activity are successfully synthesized. Cu3(HITP)2 exhibits excellent AAO-like activity and can specifically catalyze the oxidation reaction of ascorbic acid (AA). Dehydroascorbic acid (DHAA) obtained from the oxidation of AA is allowed to react with nonfluorescent o-phenylenediamine (OPD) to form 3-(1,2-dihydrox-yethyl) furo[3,4-b]quinoxaline-1-one (DFQ) with strong fluorescence emission. Moreover, Cu3(HITP)2 is able to catalyze the chemiluminescence (CL) reaction of ABEI-H2O2 to generate a strong and glow-type emission based on its POD activity. Inspired by the multienzyme mimicry activity of Cu3(HITP)2, the simple and sensitive fluorescence and chemiluminescence sensing platforms are successfully constructed and applied for the detection of AA. The sensors show high sensitivity and excellent selectivity. We believe that this multienzyme mimicry activity nanomaterial not only can be used to construct the multiple-mode biosensing platform, but also enables the extensive applications in the fields of biomedicine, energy, and environment.
Collapse
Affiliation(s)
- Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Bohan Yao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Tingting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| |
Collapse
|
2
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO 3 for time-resolved multiplex detection of avian influenza virus biomarkers. Anal Biochem 2024; 693:115583. [PMID: 38838931 DOI: 10.1016/j.ab.2024.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
3
|
Xin F, Ren X, Lin X, Ma W, Ran B, Teng Y, Gao P, Wang C, Wu L, Cun D, Zhang J. Rapid isolation of extracellular vesicles using covalent organic frameworks combined with microfluidic technique. J Pharm Biomed Anal 2024; 245:116153. [PMID: 38636194 DOI: 10.1016/j.jpba.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid-membrane vesicles involved in intercellular communication and reflecting the physiological and pathological processes of their parental cells. Rapid isolation of EVs with low cost is an essential precondition for downstream function exploration and clinical applications. In this work, we designed a novel EVs isolation device based on the boronated organic framework (BOF) coated recyclable microfluidic chip (named EVs-BD) to separate EVs from cell culture media. Using a reactive oxygen species responsive phenylboronic ester compound, the highly porous BOF with a pore size in the range of 10-300 nm was prepared by crosslinking γ-cyclodextrin metal-organic frameworks. A mussel-inspired polydopamine (PDA)/polyethyleneimine (PEI) coating was employed to pattern BOF on the PDMS substrate of microfluidic channels. The EVs-BD was demonstrated to offer distinct advantages over the traditional ultracentrifugation method, such as operation simplicity and safety, reduced time and expense, and low expertize requirements. All things considered, a novel approach of EV acquisition has been successfully developed, which can be customized easily to meet the requirements of various EV-relevant research.
Collapse
Affiliation(s)
- Fangyuan Xin
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Xiaohong Ren
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Xueyuan Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Wuzhen Ma
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ran
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupu Teng
- Shenyang Pharmaceutical University, Shenyang 110016, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Ping Gao
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Dongmei Cun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiwen Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China; Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
4
|
Abdussalam A, Liu H, Mostafa IM, Lou B, Snizhko DV, Zholudov YT, Zhang W, Xu G. VS 4 Nanodendrites with Narrow Bandgaps in Activating Dissolved Oxygen for Boosted Chemiluminescence and Hemin Detection by Unexpected Quenching. Anal Chem 2024; 96:10920-10926. [PMID: 38934123 DOI: 10.1021/acs.analchem.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Chemiluminescence (CL)-based analytical methods utilize luminophores that need to be activated with an oxidizing agent to trigger CL emission. Despite its susceptibility to decomposition when exposed to external light or trace metals, hydrogen peroxide (H2O2) has been widely used to develop chemiluminescent methods due to the limited number of suitable alternatives for activating chemiluminescent luminophores. Also, analytical methods based on the well-known luminol/H2O2 CL system have low sensitivity. Dissolved oxygen (DO) is a naturally abundant and environmentally benign alternative oxidant for luminol and other CL luminophores. However, DO alone is inactive and needs an efficient catalyst or a coreaction accelerator for its activation. Because of the narrow bandgap of VS4 (ca. 1.12 eV), it can facilitate fast electron-transfer kinetics with an acceptor molecule such as DO. Here, we introduce vanadium tetrasulfide (VS4) to boost CL for the first time. Under the optimized conditions, VS4 nanodendrite catalyzes the generation of reactive oxygen species by activating DO which subsequently reacts with luminol to generate intense CL. It enhances the CL intensity of luminol/DO by about 10,000 times. Surprisingly, hemin remarkably quenches the generated CL of luminol/DO/VS4 nanodendrites, which is completely opposite to its typical enhancement of luminol CL. Based on the remarkable concentration-dependent quenching of the luminol/DO/VS4 nanodendrite CL by hemin, we have developed a sensitive CL method that can selectively detect hemin in the linear concentration range of 1-250 nM and achieved a limit of detection of 0.11 nM. The practical utility of the developed method was demonstrated by the determination of hemin in a pharmaceutical drug for the treatment of acute intermittent porphyria and in human serum. This study demonstrates that VS4 holds great promise in analytical method development.
Collapse
Affiliation(s)
- Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
- Department of Chemistry, College of Natural and Pharmaceutical Sciences, Bayero University, P. M. Box 3011, Kano 700006, Nigeria
| | - Hongzhan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
- School of Chemistry and Applied Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Islam Mohamed Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
| | - Dmytro Viktorovych Snizhko
- Laboratory of Analytical Optochemotronics, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Yuriy Tymofiiovych Zholudov
- Laboratory of Analytical Optochemotronics, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
- School of Chemistry and Applied Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, China
- School of Chemistry and Applied Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Wang M, Shu J, Wang Y, Zhang W, Zheng K, Zhou S, Yang D, Cui H. Ultrasensitive PD-L1-Expressing Exosome Immunosensors Based on a Chemiluminescent Nickel-Cobalt Hydroxide Nanoflower for Diagnosis and Classification of Lung Adenocarcinoma. ACS Sens 2024; 9:3444-3454. [PMID: 38847105 DOI: 10.1021/acssensors.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wencan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Keying Zheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengnian Zhou
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Dongliang Yang
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Gou J, Sun T, Zhou Y, Liu H. Phosphorous nitride dots induced efficient advanced oxidation with intrinsic chemiluminescence for organic pollutant degradation. Chem Commun (Camb) 2024; 60:2962-2965. [PMID: 38376355 DOI: 10.1039/d3cc06081k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this work, we introduced new metal-free catalysts, phosphorus nitride dots (PNDs), into an environmentally friendly H2O2-SO32- system to generate abundant reactive oxygen species (O2˙-, ˙OH and SO4˙-) with strong intrinsic chemiluminescence (CL). The excellent catalytic ability of PNDs not only improved the degradation efficiency of organic pollutants, but also provided a promising prospect for deeply probing the mechanism of advanced oxidation processes (AOPs) by combining with CL.
Collapse
Affiliation(s)
- Jing Gou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Tong Sun
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yuxian Zhou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Houjing Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|