1
|
Fu L, Dong P, Liu Z, Li Q, Guo Y. Unary Au Nanocrystal with Prestored Electrons and Intrinsic Low Hole-Injected Potential for Low-Triggering Potential Electrochemiluminescence. Anal Chem 2024. [PMID: 39480793 DOI: 10.1021/acs.analchem.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive tert-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive tert-butylamine borane or N2H4·H2O containing a -C-N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/tert-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Pengjie Dong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Zerui Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| |
Collapse
|
2
|
Wang C, Cheng G, Li G, Liu J. Dual metal-organic-frameworks mediated resonance energy transfer for ultrasensitive electrochemiluminescence immunosensing. Mikrochim Acta 2024; 191:707. [PMID: 39467861 DOI: 10.1007/s00604-024-06796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
An electrochemiluminescence (ECL) biosensor for carcinoembryonic antigen (CEA) based on electrochemiluminescence resonance energy transfer (ECL-RET) was designed. Tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) was used as an energy donor for ECL-RET, and an Au nanoparticle-modified MOF framework (AuCoFe MOF) was used as an energy receptor for ECL-RET. The ECL emission spectra of Ru(bpy)32+ were in the range 550 to 680 nm, and a zinc oxalate MOF encapsulating Ru(bpy)32+ (Ru@ Zn oxalate MOF) was prepared. The UV-vis absorption spectrum of AuCoFe MOF ranges from 280 to 700 nm and overlaps with emission spectra of Ru@Zn oxalate MOF, which is critical for RET. The AuCoFe MOF-Ab2 bioconjugate, target CEA antigen, and the Ru@Zn oxalate MOF-Ab1 bioconjugate together form a sandwich structure, resulting in quenching of the ECL signal of Ru@Zn oxalate MOF by AuCoFe MOF. Under the optimized experimental conditions, the ECL-RET sensor exhibited excellent analytical performance in CEA detection with a linear range of 1.0 × 10-13 to 1.0 × 10-8 mg mL-1; the minimum limit of detection is 1.4 × 10-14 mg mL-1 (S/N = 3); and its recoveries of spiked samples ranging from 99.1 to 100.7%. The developed sensor has excellent stability, reproducibility, and specificity and is suitable for the detection of CEA in human serum and has the potential to provide sensitive detection of other biomarkers of diseases.
Collapse
Affiliation(s)
- Chun Wang
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, Xinjiang, P. R. China
| | - Gaoxing Cheng
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, Xinjiang, P. R. China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, Xinjiang, P. R. China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, Hunan, P. R. China.
| |
Collapse
|
3
|
Chen F, Luo L, Liu J, Xing Y, Yang X, Xue Y, Ouyang X. Ultralow Potential Cathodic Electrochemiluminescence Aptasensor for Detection of Kanamycin Using Copper Nanoribbons as Coreaction Accelerator. ACS Sens 2024. [PMID: 39466103 DOI: 10.1021/acssensors.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An ultralow cathodic potential electrochemiluminescence (ECL) aptasensor was designed, employing DNA nanoribbon template self-assembly copper nanoclusters (DNR-CuNCs) as a novel coreaction accelerator within the luminol-H2O2 system for the sensitive detection of kanamycin (KANA). Mechanistic investigations revealed that the DNR-CuNCs preferred to generate highly active hydroxyl radicals by facilitating the reduction of the coreactant H2O2 under neutral pH conditions, consequently enhancing cathodic luminescence. By the strong π-π stacking effect of KANA aptamer and graphene as a signal modulation switch, DNR-CuNCs were displaced from the electrode surface due to the affinity of KANA and its aptamer, resulting in the inhibition of the luminol-H2O2 system and a decrease in the ECL signal. Under optimal experiments, the aptasensor demonstrated exceptional sensitivity in detecting KANA within the concentration range from 1 × 10-2 to 5 × 105 pg/mL, with the detection limit as low as 0.18 fg/mL. This innovative strategy provided a novel approach to designing effective ECL emitters for monitoring food safety.
Collapse
Affiliation(s)
- Fangfang Chen
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Lan Luo
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jixiang Liu
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yukun Xing
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xinya Yang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yumiao Xue
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
4
|
Yao L, Mei X, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A novel electrochemiluminescent sensor based on AgMOF@N-CD composites for sensitive detection of trilobatin. Analyst 2024; 149:5265-5276. [PMID: 39264159 DOI: 10.1039/d4an01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel electrochemiluminescent (ECL) sensor for highly sensitive detection of trilobatin (Tri) was developed based on silver metal-organic frameworks (AgMOFs) and nitrogen-doped carbon quantum dots (N-CDs). N-CDs exhibited high ECL intensity but poor ECL stability, while AgMOFs had a large specific surface area, high porosity, and good adsorption properties. Compositing both of them not only improved the ECL stability of N-CDs, but also enhanced the ECL strength of materials, so AgMOF@N-CD composites were used as the luminophore of the sensor. Under the optimized conditions, the ECL sensor showed a linear range of 1.0 × 10-7 M to 1.0 × 10-3 M for the detection of Tri, and the detection limit was as low as 5.99 × 10-8 M (S/N = 3). In addition, the sensor had excellent reproducibility, stability, and anti-interference ability. It could be utilized for the detection of Tri in real samples with recoveries of 95.78-102.26%, indicating that the constructed ECL sensor for detecting Tri possessed better application prospects.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit. Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
5
|
Li C, Feng M, Stanković D, Bouffier L, Zhang F, Wang Z, Sojic N. Wireless rotating bipolar electrochemiluminescence for enzymatic detection. Analyst 2024; 149:2756-2761. [PMID: 38563766 DOI: 10.1039/d4an00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 μM and with a limit of detection of 10 μM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.
Collapse
Affiliation(s)
- Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Minghui Feng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dalibor Stanković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Laurent Bouffier
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| |
Collapse
|
6
|
Chen YF, Guo YZ, Xiao S, Chai YQ, Liu JL, Yuan R. Renewable Electrochemiluminescence Biosensor Based on Eu-MOGs as a Highly Efficient Emitter and a DNAzyme-Mediated Dual-drive DNA Walker as a Signal Amplifier for Ultrasensitive Detection of miRNA-222. Anal Chem 2024; 96:4589-4596. [PMID: 38442212 DOI: 10.1021/acs.analchem.3c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.
Collapse
Affiliation(s)
- Yi-Fei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu-Zhuo Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shuang Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Liang W, Wang M, Ma C, Wang J, Zhao C, Hong C. NiCo-LDH Hollow Nanocage Oxygen Evolution Reaction Promotes Luminol Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306473. [PMID: 37926790 DOI: 10.1002/smll.202306473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/08/2023] [Indexed: 11/07/2023]
Abstract
Conventional luminol co-reactant electrochemiluminescence (ECL) systems suffer from low stability and accuracy due to factors such as the ease of decomposition of hydrogen peroxide and inefficient generation of reactive oxygen species (ROS) from dissolved oxygen. Inspired by the luminol ECL mechanism mediated by oxygen evolution reaction (OER), the nickel-cobalt layered double hydroxide (NiCo-LDH) hollow nanocages with hollow structure and defect state are used as co-reaction promoters to enhance the ECL emission from the luminol-H2 O system. Thanks to the hollow structure and defect state, NiCo-LDH hollow nanocages show excellent OER catalytic activity, which can stabilize and efficiently produce ROS and enhance the ECL emission. Additionally, mechanistic exploration suggests that the ROS involved in the co-reaction of the luminol-H2 O system are derived from the OER reaction process, and there is a positive correlation between ECL intensity and the OER catalytic activity of the co-reaction promoter. The selection of catalysts with excellent OER catalytic activity is a key factor in improving ECL emission. Finally, a dual-mode immunosensor is constructed for the detection and analysis of alpha-fetoprotein (AFP) based on the promoting effect of NiCo-LDH hollow nanocages on the luminol-H2 O ECL system.
Collapse
Affiliation(s)
- Wenjin Liang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Chaoyun Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830000, China
| | - Jiawen Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| |
Collapse
|
8
|
Ma Y, Huang J, Xue J, Liu L, Ouyang H, Guo T, Fu Z. Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensor for Methicillin-Resistant Staphylococcus aureus. Anal Chem 2024; 96:2702-2710. [PMID: 38289033 DOI: 10.1021/acs.analchem.3c05620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Design of a ratiometric method is a promising pathway to improve the sensitivity and reliability of electrochemiluminescent (ECL) assay, for which the signals produced at two distinct potentials change reversely as it is applied to the target analyte. Herein, a biosensor for ECL assay of methicillin-resistant Staphylococcus aureus (MRSA) was constructed by immobilizing porcine IgG for capturing MRSA onto an electrode that was precoated with β-cyclodextrin-conjugated luminol nanoparticles (β-CD-Lu NPs) as an anodic luminophore. MOF PCN 224 loaded with an atomically distributed Zn element (PCN 224/Zn) was conjugated with phage recombinant cellular-binding domain (CBD) to act as a cathodic luminophore for tracing MRSA. After the formation of the sandwich complex of β-CD-Lu NPs-porcine IgG/MRSA/PCN 224/Zn-CBD on the biosensor, two ECL reactions were triggered with cyclic voltammetry. The anodic process of the β-CD-Lu NPs-H2O2 system and the cathodic process of the PCN 224/Zn-S2O82- system competed to react with reactive oxygen species (ROS) for producing ECL emission, which led to a reverse change of the two signals. Meanwhile, the overlap of the β-CD-Lu NPs emission spectrum and PCN 224/Zn absorption spectrum effectively triggered ECL resonance energy transfer between the donor (β-CD-Lu NPs) and the acceptor (PCN 224/Zn). Thus, a ratiometric ECL method was proposed for assaying MRSA with a dual-mechanism-driven mode. The detection limit for assaying MRSA is as low as 12 CFU/mL. The biosensor was applied to assay MRSA in various biological samples with recoveries ranging from 84.9 to 111.3%.
Collapse
Affiliation(s)
- Yuchan Ma
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Junyi Huang
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Liu
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ting Guo
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|